The requirements of the Building Departments of different cities vary considerably as regards detail matters, but are in quite close agreement on points affecting the strength of structures.

The following table shows the requirements of different cities as regards live loads:

Table IX. Building Laws: Specified Live Loads In Different Classes Of Buildings

The loads specified are exclusive of weight of materials of construction.

Class of Structure.

New York, 1900.

Chicago,

1900.

Philadelphia, 1903.

Boston, 1900.

Load, Pounds per Square Foot.

Dwellings, Apartment Houses,Hotels, and Lodging Houses........

60

40

70

50

Office Buildings - First

Floor.........

150

100

100

100

Office Buildings - above First Floor....

75

100

100

100

Schools - except Assembly

Halls..........

75

80

Assembly Halls..........

90

100

120

150

*Stores for Heavy Materials; Warehouses and Factories; Drill Sheds. . .

150

100

150

250

Roofs...............

50

25

30

25

*Minimum loads as above. Buildings used for special purposes to have loads specified accordingly.

Table X indicates allowable unit-stresses.

Table X. Allowable Unit-Stresses For Steel And Cast Iron, As Specified By Building Laws Of Different Cities

Stresses are for Medium Steel unless otherwise noted.

New York, 1900.

Chicago,

1900.

Philadelphia,

1903.

BOSTON, 1900.

Pounds per Square Inch.

Extreme fibre stress-Bending.

Rolled steel beams and shapes....

16,000

16,000

16,000

16,000

Rolled steel pins, rivets . .

20,000

22,500

22,500

Riveted steel beams - Compression.....

12,000

Riveted steel beams - Tension net section...

14,000

15,000

Cast iron - Compression .. .

16,000

10,000

8,000

Cast iron - Tension. . . .

3,000

2,500

3,750

2,500

Compression, Direct.

Rolled steel...........

16,000

16,250

Cast steel...........

16,000

16,250

Wrought iron........

12,000

12,500

Cast iron (in short blocks) .

16,000

17,500

Steel pins and rivets (bearing) .....

20,000

20,000

18,000

Wrought-iron pins and rivets (bearing)......

15,000

15,000

15,000

Tension, Direct.

Rolled steel......

16,000

15,000

16,250

15,000

Cast steel..........

16,000

15,000

16,250

Wrought iron......

12,000

12,000

12,500

12,000

Cast iron......

3,000

Shear.

Steel web plates.......

9,000

10,000

Steel shop rivets and pins .

10,000

10,000

10,000

10,000

Steel field rivets and pins .

8,000

10,000

10,000

10,000

STeel field bolts......

7,000

10,000

10,000

Wrought-iron web plate . .

6,000

9,000

Wrought-iron shop rivets and pins.....

7,500

7,500

7,500

9,000

Wrought-iron field rivets and pins......

6,000

7,500

7,500

9,000

Wrought-iron field bolts . .

5,500

7,500

9,000

Cast iron.........

3,000

Columns.

Miled steel*......

15,200-58 L

R

15,000

14,500

1+ L2/13,500 R2

12,000

Medium steel*........

15,200-58- L

R

15,000

16,250

1+L2/11,000R2

12,000

Wrought iron.........

14,000-80 -L

R

12,000

12,500/1+L2/15,000R2

10,000

Cast iron...........

11,300-30 -L/R

10,000

17.500

1+ L2/400R2

Reduced by Gordon's or other approved formulae for varying ratios of length to radius

Table XI gives, in pounds per square inch, the transverse strength of various stone constructions, brick and concrete:

Table XI. Transverse Strength Of Stone, Brick And Concrete

Extreme fibre stress - Bending.

POUNDS PER SQUARE INCH.

Blue stone flagging

2,200

Granite

1,700

Limestone

900

Marble

2,000

Slate

5,800

Sandstone

810

Brick

725

Concrete, 1 Port, cem., 2 sand, 5 gravel

200

Concrete, 1 Port. cem., 3 sand, 7 gravel

115

Where walls are carried by the steel framing at each story, they are generally made 12 inches thick.

The question of height also affects the requirements of fire resistance and prevention. There is considerable variation on these points. Table XII gives the requirements of some cities whose laws are explicit as to the thickness of walls and the proportion of loads on columns and foundations.

Table XII. Thickness In Inches Of Brick Bearing Walls. Chicago Law, 1901

STORIES

BASEMENT

1st

2d

3d

4th

5th

6th

7 th

8th

9th

10th

ll th

12 th

One-story

12

12

Two-story

16

12

12

Three-story

16

16

12

12

Four-story

20

20

16

16

12

Five-story

24

20

20

16

16

16

Six-story

24

20

20

20

16

16

16

Seven-story

24

20

20

20

20

16

16

16

Eight-story

24

24

24

20

20

20

16

16

16

Nine-story

28

24

24

24

20

20

20

16

16

16

Ten-story

28

28

28

24

24

24

20

20

20

16

16

Eleven-story

28

28

28

24

24

24

20

20

20

16

16

16

Twelve-story

32

28

28

28

24

24

24

20

20

20

16

16

16

The above table applies to manufacturing and storage buildings.

Table XII, A. Thickness In Inches Of Brick Bearing Walls. Philadelphia Law, 1903

STORIES

1st

2d

3d

4th

5th

6th

7th

8th

9th

10th

ll th

12th

One-story

13

Two-story

13

13

Three-story

18

13

13

Four-story

18

18

13

13

Five-story

22

18

18

13

13

Six-story

22

22

18

18

13

13

Seven-story

26

22

22

18

18

13

13

Eight-story

26

26

22

22

18

18

13

13

Nine-story

30

26

26

22

22

18

18

13

13

Ten-story

30

30

26

26

22

22

18

18

13

13

Eleven-story

34

30

30

26

26

22

22

18

18

13

13

Twelve-story

34

34

30

30

26

26

22

22

18

18

13

13

The above applies to exterior and bearing walls of business, manufacturing and public buildings, 75 feet to 125 feet long and 26 feet or less clear span. Hotels and tenements may have the 3 upper stories 13 inches and following down from that in the sequence given above.

Table XII, B

Safe Bearing Values in Tons per sq. ft. on Different Classes of Masonry.

New York, 1900.

Chicago, , 1901.

Philadelphia, 1903.

Boston, 1900.

Granite (Dressed Joints) in Portland Cement

-

7

-

60

Rabble Stonework in Lime Mortar

5

-

5

-

Rubble Stonework in Cement Mortar

10

-

10

-

Brickwork in Lime Mortar

8

6 1/2

8

8

Brickwork in Cement Mortar

15

9

15

15

Concrete, Portland Cement

16

4

15

-

Hardwood Piles (Maximum on Head of Pile)

-

25

20

-

The minimum thickness of curtain walls in Chicago is 12 inches, in Philadelphia 13 inches, and in New York 12 inches for the upper 75 feet of wall, and 4 inches thicker for each 60 feet below. The New York law allows curtain walls to be built between piers or steel columns and not supported on steel girders, provided the thickness is 12 inches for the upper 60 feet and 4 inches thicker for each 60 feet below.

Wind Pressure. The Philadelphia law requires 30 pounds per square foot to be calculated on exposed surfaces of isolated buildings; on office buildings 25 pounds per square foot at the 10th floors, and 2 1/2 pounds less for each story below and 2 1/2 pounds more for each story above, up to a maximum of 35 pounds.

The combined stress in columns resulting from direct vertical loads and the bending due to the above wind pressures is allowed to be 30 per cent above that for simply direct loading by the Philadelphia law, and 50 per cent by the New York law.

In New York no allowance for wind is required if the building is under 150 feet high, and this height does not exceed four times the average width of base. For buildings other than as above, 30 pounds per square foot of wind pressure from the ground to the top is required. The overturning moment of the wind is not allowed to be more than 75 per cent of the moment of stability of the structure.

Reduction in Live Load on Columns, Girders and Foundations. The Philadelphia law allows the live loads used in calculation of columns, girders and foundations for all but manufacturing and storage buildings, to be reduced by the following formula:

Building Laws And Specifications 050060

and for light manufacturing buildings, by where x = the percentage of live load to be used, and A = the area supported.

Building Laws And Specifications 050061

The New York law requires the full live load of roof and top floor, but allows a reduction in each succeeding lower floor of 5 per cent until this reduction amounts to 50 per cent of the live load; not less than 50 per cent of the live load may be used in the calculations. For foundations not less than 60 per cent of the live load may be used.

Where the laws limit the height to about 125 feet, the requirements as regards fire protection and prevention are in general that the floors and roofs shall be constructed of steel beams and girders, between which shall be sprung arches of tile or terra cotta or brick, or approved systems of concrete and concrete-steel. All weight-bearing metal of every description shall be covered with non-combustible materials, generally terra cotta or wire lath and cement.

In buildings of this height the use of wood for top floors laid in wood screeds imbedded in concrete, and of wood for all interior finish, is allowed.

Under the New York City law, buildings above sixteen stories are required to have their upper stories constructed entirely without wood, except that the so-called fireproof wood may be used for interior finish. The floors, however, are required to be of tile or mosaic or other non-combustible material, the wood top floor not being allowed.

Factor of Safety. The foregoing values represent the working values of unit-stresses. They are in all cases a certain percentage of the strains under which rupture would occur. This percentage varies with the different classes of material and the different classes of structure. The quotient of the breaking strain divided by the allowable or safe working strain is called the " factor of safety."

Steel and wrought iron used in ordinary building construction have generally a factor of safety of 4; timber, generally from 6 to 8; cast iron, from 6 to 10; stone from 10 to 15.