Electric Bell - How Operated

The moment a current passes through the magnets (C, C), the core is magnetized, and the result is that the armature (D) is attracted to the magnets, as shown by the dotted lines (O), when the clapper strikes the bell. But when the armature moves over to the magnet, the connection is broken between the screw (I) and armature (D), so that the cores of the magnets are demagnetized and lose their pull, and the spring (E) succeeds in drawing back the armature. This operation of vibrating the armature is repeated with great rapidity, alternately breaking and re-establishing the circuit, by the action of the current.

In making the bell, you must observe one thing, the binding posts (B, B') must be insulated from each other, and the post J, or the post F, should also be insulated from the base. For convenience we show the post F insulated, so as to necessitate the use of wire (N) from post (F) to binding post (B').

The foregoing assumes that you have used a cast metal base, as most bells are now made; but if you use a wooden base, the binding posts (B, B') and the posts (F, J) are insulated from each other, and the construction is much simplified.

It is better, in practice, to have a small spring (P, Fig. 50) between the armature (D) and the end of the adjusting screw (I), so as to give a return impetus to the clapper. The object of the adjusting screw is to push and hold the armature close up to the ends of the magnets, if it seems necessary.

If two bells are placed on the base with the clapper mounted between them, both bells will be struck by the swinging motion of the armature.

An easily removable cap or cover is usually placed over the coils and armature, to keep out dust.

A very simple annunciator may be attached to the bell, as shown in the following figures:

Figs. 51 54. AnnunciatorFigs. 51-54. Annunciator

Annunciators

Make a box of wood, with a base (A) 4" × 5" and ½ inch thick. On this you can permanently mount the two side pieces (B) and two top and bottom pieces (C), respectively, so they project outwardly 4½ inches from the base. On the open front place a wood or metal plate (D), provided with a square opening (D), as in Fig. 54, near its lower end. This plate is held to the box by screws (E).

Within is a magnet (F), screwed into the base (A), as shown in Fig. 51; and pivoted to the bottom of the box is a vertical armature (G), which extends upwardly and contacts with the core of the magnet. The upper end of the armature has a shoulder (H), which is in such position that it serves as a rest for a V-shaped stirrup (I), which is hinged at J to the base (C). This stirrup carries the number plate (K), and when it is raised to its highest point it is held on the shoulder (H), unless the electro-magnet draws the armature out of range of the stirrup. A spring (L) bearing against the inner side of the armature keeps its upper end normally away from the magnet core. When the magnet draws the armature inwardly, the number plate drops and exposes the numeral through the opening in the front of the box. In order to return the number plate to its original position, as shown in Fig. 51, a vertical trigger (M) passes up through the bottom, its upper end being within range of one of the limbs of the stirrup.

This is easily made by the ingenious boy, and will be quite an acquisition to his stock of instruments. In practice, the annunciator may be located in any convenient place and wires run to that point.

Fig. 55. Alarm Switch on WindowFig. 55. Alarm Switch on Window Fig. 56. Burglar Alarm Attachment to WindowFig. 56. Burglar Alarm Attachment to Window