Secure a piece of wood 1/2 in. thick and cut out a ring with an outside diameter of 10-1/2 in. and an inside diameter of 9 in. and glue to each side two other rings 1/4 in. thick with the same inside diameter as the first ring and 11 in. outside diameter, thus forming a 1/4-in. channel in the circumference of the ring. If a lathe is at hand this ring can be made from a solid piece and the channel turned out. Cut another circular piece 11 in. in diameter for a base. Make a hole in the center of this piece 1 in. wide and 6-5/16 in. long, into which the ring first made should fit so that its inner surface is just even with the upper surface of the baseboard. The ring is held upright in the hole by a small strip screwed to the base as shown. All screws and brads that are used must be of brass. The cutting of these circular pieces is not so difficult if a band saw driven by power is used. They can be cut by means of a key-hole saw if a band saw is not accessible.

Before mounting the ring on the base, the groove should be wound with 8 turns of No. 16 double cotton-covered magnet wire. The two ends may be tied together with a string to hold temporarily.

Fasten two strips of wood 1/4-in. thick 5/8-in. wide and 11 in. long across the sides of the ring with their upper edges passing exactly through the center of the ring. An ordinary pocket compass, about 1-1/4 in. in diameter, is fitted in these strips so that the center of the needle or pointer will be exactly in the center of the ring and its zero point mark at the half-way point between the two strips. Put the ring in place on the base, as shown in the sketch, and connect the two ends of the wire to two binding-posts that are previously attached to the base. Coat the entire surface with brown shellac. Any deviation from the dimensions will cause errors in the results obtained by its use.

Remove all pieces of iron or steel and especially magnets in the near vicinity of the instrument when in use. Place the galvanometer on a level table and turn it until the needle, pointing north and south, and swinging freely, lies exactly in the plane of the coil, as shown in the cut. The needle then will point to zero if the directions have been followed closely. Connect one cell of battery to the instrument and allow the current to flow through the coils. The needle of the compass will be deflected to one side or the other, and will finally come to rest at a certain angle-let us say 45 deg. The dimensions of the instrument are such that when the deflection is 45 deg. the current flowing through the coils upon the ring is 1/2 ampere. The ampere is the unit chosen to designate the strength of the electric current. For other angles the value of the current may be found from the following table: Tangent Galvanometer

Illustration: Tangent Galvanometer

Angles Degrees Current Amperes

10 .088

20 .182

30 .289

40 .420

45 .500

50 .600

55 .715

60 .865

70 1.375

As the magnetic force that acts upon a magnet needle varies in different places the values given for the current will not be true in all parts of the country. The table gives correct values for the immediate vicinity of Chicago and that part of the United States lying east of Chicago, and north of the Ohio river. The results given should be multiplied by 1.3 for places south of the Ohio river and east of the Mississippi.