By W. MATTIEU WILLIAMS.

A history of electricity, in order to be complete, must include two distinct and very different subjects: the history of electrical science, and a history of electrical exaggerations and delusions. The progress of the first has been followed by a crop of the second from the time when Kleist, Muschenbroek, and Cuneus endeavored to bottle the supposed fluid, and in the course of these attempts stumbled upon the "Leyden jar."

Dr. Lieberkuhn, of Berlin, describes the startling results which he obtained, or imagined, "when a nail or a piece of brass wire is put into a small apothecary's phial and electrified." He says that "if, while it is electrifying, I put my finger or a piece of gold which I hold in my hand to the nail, I receive a shock which stuns my arms and shoulders." At about the same date (the middle of the last century), Muschenbroek stated, in a letter to Réaumur, that, on taking a shock from a thin glass bowl, "he felt himself struck in his arms, shoulders, and breast, so that he lost his breath, and was two days before he recovered from the effects of the blow and the terror" and that he "would not take a second shock for the kingdom of France." From the description Of the apparatus, it is evident that this dreadful shock was no stronger than many of us have taken scores of times for fun, and have given to our school-follows when we became the proud possessors of our first electrical machine.

Conjurers, mountebanks, itinerant quacks, and other adventurers operated throughout Europe, and were found at every country fair and fete displaying the wonders of the invisible agent by giving shocks and professing to cure all imaginable ailments.

Then came the discoveries of Galvani and Volta, followed by the demonstrations of Galvani's nephew Aldini, whereby dead animals were made to display the movements of life, not only by the electricity of the Voltaic pile, but, as Aldini especially showed, by a transfer of this mysterious agency from one animal to another.

According to his experiments (that seem to be forgotten by modern electricians) the galvanometer of the period, a prepared frog, could be made to kick by connecting its nerve and muscle with muscle and nerve of a recently killed ox, with, or without metallic intervention.

Thus arose the dogma which still survives in the advertisements of electrical quacks, that "electricity is life," and the possibility of reviving the dead was believed by many. Executed criminals were in active demand; their bodies were expeditiously transferred from the gallows or scaffold to the operating table, and their dead limbs were made to struggle and plunge, their eyeballs to roll, and their features to perpetrate the most horrible contortions by connecting nerves with one pole, and muscles with the opposite pole of a battery.

The heart was made to beat, and many men of eminence supposed that if this could be combined with artificial respiration, and kept up for awhile, the victim of the hangman might be restored, provided the neck was not broken. Curious tales were loudly whispered concerning gentle hangings and strange doings at Dr. Brookes's, in Leicester Square, and at the Hunterian Museum, in Windmill Street, now flourishing as "The Café de l'Etoile." When a child, I lived about midway between these celebrated schools of practical anatomy, and well remember the tales of horror that were recounted concerning them. When Bishop and Williams (no relation to the writer) were hanged for burking, i.e., murdering people in order to provide "subjects" for dissection, their bodies were sent to Windmill Street, and the popular notion was that, being old and faithful servants of the doctors, they were galvanized to life, and again set up in their old business.

It is amusing to read some of the treatises on medical galvanism that were published at about this period, and contrast their positive statements of cures effected and results anticipated with the position now attained by electricity as a curative agent.

Then came the brilliant discoveries of Faraday, Ampère, etc., demonstrating the relations between electricity and magnetism, and immediately following them a multitude of patents for electro-motors, and wild dreams of superseding steam-engines by magneto-electric machinery.

The following, which I copy from the Penny Mechanic, of June 10, 1837, is curious, and very instructive to those who think of investing in any of the electric power companies of to-day: "Mr. Thomas Davenport, a Vermont blacksmith, has discovered a mode of applying magnetic and electro-magnetic power, which we have good ground for believing will be of immense importance to the world." This announcement is followed by reference to Professor Silliman's American Journal of Science and the Arts, for April, 1837, and extracts from American papers, of which the following is a specimen: "1. We saw a small cylindrical battery, about nine inches in length, three or four in diameter, produce a magnetic power of about 300 lb., and which, therefore, we could not move with our utmost strength. 2. We saw a small wheel, five-and-a-half inches in diameter, performing more than 600 revolutions in a minute, and lift a weight of 24 lb. one foot per minute, from the power of a battery of still smaller dimensions. 3. We saw a model of a locomotive engine traveling on a circular railroad with immense velocity, and rapidly ascending an inclined plane of far greater elevation than any hitherto ascended by steam-power. And these and various other experiments which we saw, convinced us of the truth of the opinion expressed by Professors Silliman, Renwick, and others, that the power of machinery may be increased from this source beyond any assignable limit. It is computed by these learned men that a circular galvanic battery about three feet in diameter, with magnets of a proportionable surface, would produce at least a hundred horse-power; and therefore that two such batteries would be sufficient to propel ships of the largest class across the Atlantic. The only materials required to generate and continue this power for such a voyage would be a few thin sheets of copper and zinc, and a few gallons of mineral water."