From these facts we might fairly infer that asphalts formed in geological ages anterior to the present would exhibit characters resulting from still further distillation; that they would be harder and drier, i.e., containing less volatile ingredients and more fixed carbon. Such is, in fact, the case; and these older asphalts are represented by Grahamite, Albertite, etc., which I have designated as asphaltic coals. These are found in fissures and cavities in rocks of various ages, which have been more or less disturbed, and usually in regions where springs of petroleum now exist. The Albertite fills fissures in Carboniferous rocks in New Brunswick, on a line of disturbance and near oil-springs. Precisely the same may be said of the Grahamite of West Virginia. It fills a vertical fissure, which was cut through the sandstones and shales of the coal-measures; in the sandstones it remained open, in the shales it has been closed by the yielding of the rock. The Grahamite fills the open fissure in the sandstone, and was plainly introduced when in a liquid state. In the vicinity are oil springs, and it is on an axis of disturbance. From near Tampico, Mexico, I have received a hydrocarbon solid--essentially Grahamite, asphalt, and petroleum.

These are described as occurring near together, and evidently represent phases of different dates in the same substance. I have collected asphaltic coals, very similar to Grahamite and Albertite in appearance and chemical composition, in Colorado and Utah, where they occur with the game associates as at Tampico. I have found at Canajoharie, New York, in cavities in the lead-veins which rut the Utica shale, a hydrocarbon solid which must have infiltrated into these cavities as petroleum, but which, since the remote period when the fissures were formed, has been distilled until it is now anthracite. Similar anthracitic asphalt or asphaltic anthracite is common in the Calciferous sand-rock in Herkimer County, New York, where it is associated with, and often contained in, the beautiful crystals of quartz for which the locality is famous. Here the same phase of distillation is reached as in the coke residuum of the petroleum stills.

Again, in some crystalline limestones, detached scales or crystals of graphite occur, which are undoubtedly the product of the complete distillation of liquid hydrocarbons with which the rock was once impregnated. The remarkable purity of such graphite is the natural result of its mode of formation, and such cases resemble the occurrence of graphite in cast iron and basalt. The black clouds and bands which stain many otherwise white marbles are generally due to specks of graphite, the residue of hydrocarbons which once saturated the rock. Some limestones are quite black from the carbonaceous matter they contain (Lycoming Valley, Pa., Glenn's Falls, N. Y., and Collingwood, Canada), and these are sold as black marbles, but if exposed to heat, such limestones are blanched by the expulsion of the contained carbon; usually a residue of anthracite or graphite is left, forming dark spots or streaks, as we find in the clouded and banded marbles.

Finally, the great work going on in Nature's laboratory may be closely imitated by art; the differences in the results being simply the consequence of differing conditions in the experiments. Vegetable tissue has been converted artificially into the equivalents of lignite, coal, anthracite, and graphite, with the emission of vapors, gases, and oils closely resembling those evolved in natural processes. So petroleum may be distilled to form asphalt, and this in turn converted into Albertite and coke (i.e., anthracite). Grahamite has been artificially produced from petroleum by Mr. W. P. Jenney.

In the preceding remarks, no effort has been made even to enumerate all the so-called carbon minerals which have been described. This was unnecessary in a discussion of the relations of the more important groups, and would have extended this article much beyond its prescribed length. Those who care to gain a fuller knowledge of the different members of the various groups are referred to the admirable chapter on the "Hydrocarbon Compounds" in Dana's Mineralogy.

It will, however, add to the value of this paper, if brief mention be made of a few carbon minerals of which the genesis and relations are not generally known, and in regard to which special interest is felt, such as the diamond, jet, the hydrocarbon jellies, "Dopplerite," etc.

The diamond is found in the débris of metamorphic rocks in many countries, and is probably one of the evolved products of the distillation of organic matter they once contained. Under peculiar circumstances it has apparently been formed by precipitation from sulphide of carbon or some other volatile carbon compound by elective affinity. Laboratory experiments have proved the possibility of producing it by such a process, but the artificial crystals are microscopic, perhaps only because a long time is required to build up those of larger size.

Jet is a carbonaceous solid which in most cases is a true lignite, and generally retains more or less of the structure of wood. Masses are sometimes found that show no structure, and these are probably formed from bitumen which has separated from the wood of which it once formed part, and which it generally saturates or invests. In some cases, however, these masses of jet-like substance are plainly the residuum of excrementitious matter voided by fishes or reptiles. These latter are often found in the Triassic fish-beds of Connecticut and New Jersey, and in the Cretaceous marls of the latter State.

The discovery of a quantity of hydrocarbon jelly, recently, in a peat-bed at Scranton, Pa., has caused some wonder, but similar substances (Dopplerite, etc.) have been met with in the peat-beds of other countries; and while the history of the formation of this singular group of hydrocarbons is not yet well understood, and offers an interesting subject for future research, we have reason to believe that these jellies have been of common occurrence among the evolved products of the decomposition of vegetable tissue in all ages.