That the Leguminosae (a group of plants including peas, beans, Bacteria and Leguminosae. vetches, lupins, etc.) play a special part in agriculture was known even to the ancients and was mentioned by Pliny (Historia Naturalis, viii). These plants will not only grow on poor sandy soil without any addition of nitrogenous manure, but they actually enrich the soil on which they are grown. Hence leguminous plants are essential in all rotation of crops. By analysis it was shown by Schulz-Lupitz in 1881 that the way in which these plants enrich the soil is by increasing the nitrogen-content. Soil which had been cultivated for many years as pasture was sown with lupins for fifteen years in succession; an analysis then showed that the soil contained more than three times as much nitrogen as at the beginning of the experiment. The only possible source for this increase was the atmospheric nitrogen. It had been, however, an axiom with botanists that the green plants were unable to use the nitrogen of the air. The apparent contradiction was explained by the experiments of H. Hellriegel and Wilfarth in 1888. They showed that, when grown on sterilized sand with the addition of mineral salts, the Leguminosae were no more able to use the atmospheric nitrogen than other plants such as oats and barley.

Both kinds of plants required the addition of nitrates to the soil. But if a little water in which arable soil had been shaken up was added to the sand, then the leguminous plants flourished in the absence of nitrates and showed an increase in nitrogenous material. They had clearly made use of the nitrogen of the air. When these plants were examined they had small swellings or nodules on their roots, while those grown in sterile sand without soil-extract had no nodules. Now these peculiar nodules are a normal characteristic of the roots of leguminous plants grown in ordinary soil. The experiments above mentioned made clear for the first time the nature and activity of these nodules. They are clearly the result of infection (if the soil extract was boiled before addition to the sand no nodules were produced), and their presence enabled the plant to absorb the free nitrogen of the air.

Fig. 15. Invasion of leguminous roots by bacteria.

Fig. 15. - Invasion of leguminous roots by bacteria.

a, cell from the epidermis of root of Pea with "infection thread" (zoogloea) pushing its way through the cell-walls. (After Prazmowski.)

b, free end of a root-hair of Pea; at the right are particles of earth and on the left a mass of bacteria. Inside the hair the bacteria are pushing their way up in a thin stream.

(From Fischer's Vorlesungen über Bakterien.)

Fig. 16. Bacteria in legume roots. Fig. 16.

a, root nodule of the lupin, nat. size. (From Woromv.)

b, longitudinal section through root and nodule.

g, fibro-vascular bundle.

w, bacterial tissue. (After Woromv.)

c, cell from bacterial tissues showing nucleus and protoplasm filled with bacteria.

d, bacteria from nodule of lupin, normal undegenerate form.

e and f, bacteroids from Vicia villosa and Lupinus albus. (After Morck.)

(From Fischer's Vorlesungen über Bakterien.)

The work of recent investigators has made clear the whole process. In ordinary arable soil there exist motile rod-like bacteria, Bacterium radicicola. These enter the root-hairs of leguminous plants, and passing down the hair in the form of a long, slimy (zoogloea) thread, penetrate the tissues of the root. As a result the tissues become hypertrophied, producing the well-known nodule. In the cells of the nodule the bacteria multiply and develop, drawing material from their host. Many of the bacteria exhibit curious involution forms ("bacteroids"), which are finally broken down and their products absorbed by the plant. The nitrogen of the air is absorbed by the nodules, being built up into the bacterial cell and later handed on to the host-plant. It appears from the observations of Mazé that the bacterium can even absorb free nitrogen when grown in cultures outside the plant. We have here a very interesting case of symbiosis as mentioned above. The green plant, however, always keeps the upper hand, restricting the development of the bacteria to the nodules and later absorbing them for its own use.

It should be mentioned that different genera require different races of the bacterium for the production of nodules.

The important part that these bacteria play in agriculture led to the introduction in Germany of a commercial product (the so-called "nitragin") consisting of a pure culture of the bacteria, which is to be sprayed over the soil or applied to the seeds before sowing. This material was found at first to have a very uncertain effect, but later experiments in America, and the use of a modified preparation in England, under the direction of Professor Bottomley, have had successful results; it is possible that in the future a preparation of this sort will be widely used.

The apparent specialization of these bacteria to the leguminous plants has always been a very striking fact, for similar bacterial nodules are known only in two or three cases outside this particular group. However, Professor Bottomley announced at the meeting of the British Association for the Advancement of Science in 1907 that he had succeeded in breaking down this specialization and by a suitable treatment had caused bacteria from leguminous nodules to infect other plants such as cereals, tomato, rose, with a marked effect on their growth. If these results are confirmed and the treatment can be worked commercially, the importance to agriculture of the discovery cannot be overestimated; each plant will provide, like the bean and vetch, its own nitrogenous manure, and larger crops will be produced at a decreased cost.