Sound Reflections

Sound waves move outwardly from the object in the form of wave-like rings, but those concentric rings, as they are called, may be interrupted at various points by obstacles. When that is the case the sound is buffeted back, producing what is called echoes.


Materials have a quality that produces a very useful result, called resonance, and it is one of the things that gives added effect to a speaker's voice in a hall, where there is a constant succession of echoes. A wall distant from the speaker about 55 feet, produces an almost instantaneous reflection of the sound, and at double that measurement the effect is still stronger. When the distance is too short for the reflecting sound to be heard, we have resonance. It enriches the sound of the voice, and gives a finer quality to musical instruments.


When sounds are heard after the originals are emitted they tend to confusion, and the quality of resonance is lost. There are places where echoes are repeated many times. In the chateau of Simonetta, Italy, a sound will be repeated thirty times.

Speaking Trumpet

This instrument is an example of the use of reflection. It is merely a bell-shaped, or flaring body, the large end of which is directed to the audience. The voice talking into the small end is directed forwardly, and is reflected from the sides, and its resonance also enables the vibrations to carry farther than without the use of the solid part of the instrument.

The ear trumpet is an illustration of a sound-collecting device, the waves being brought together by reflection.

The Stethoscope

This is an instrument used by physicians, and it is so delicate that the movements of the organs of the body can be heard with great distinctness. It merely collects the vibrations, and transmits them to the ears by the small tubes which are connected with the collecting bell.

The Vitascope

- Numerous instruments have been devised to determine the rate of vibration of different materials and structures, the most important being the vitascope, which has a revolvable cylinder, blackened with soot, and this being rotated at a certain speed, the stylus, which is attached to the vibrating body, in contact with the cylinder, will show the number per second, as well as the particular character of each oscillation.

The Phonautograph

This instrument is used to register the vibration of wind instruments, as well as the human voice, and the particular forms of the vibrations are traced on a cylinder, the tracing stylus being attached to a thin vibrating membrane which is affected by the voice or instrument.

The Phonograph

This instrument is the outgrowth of the stylus forms of the apparatus described, but in this case the stylus, or needle, is fixed to a metallic diaphragm, and its point makes an impression on suitable material placed on the outside of a revolvable cylinder or disc.


Light is the agent which excites the sensation of vision in the eye. Various theories have been advanced by scientists to account for the phenomenon, and the two most noted views are the corpuscular, promulgated by Sir Isaac Newton, and the undulatory, enunciated by Huygens and Euler.

The corpuscular theory conceives that light is a substance of exceedingly light particles which are shot forth with immense velocity. The undulatory theory, now generally accepted, maintains that light is carried by vibrations in ether. Ether is a subtle elastic medium which fills all space.

Luminous bodies are those like the sun, which emit light. Rays may diverge, that is, spread out; converge, or point toward each other; or they may be parallel with each other.

Velocity Of Light

Light moves at the rate of about 186,000 miles a second. As the sun is about 94,000,000 miles from the earth, it takes 8 1/2 minutes for the light of the sun to reach us.


One of the most important things connected with light is that of reflection. It is that quality which is utilized in telescopes, microscopes, mirrors, heliograph signaling and other like apparatus and uses. The underlying principle is, that a ray is reflected, or thrown back from a mirror at the same angle as that which produces the light.

When the rays of the sun, which are, of course, parallel, strike a concave mirror, the reflecting rays are converged; and when the rays strike a convex mirror they diverge. In this way the principle is employed in reflecting telescopes.


This is the peculiar action of light in passing through substances. If a ray passes through water at an angle to the surface the ray will bend downwardly in passing through, and then again pass on in a straight line. This will be noticed if a pencil is stood in a glass of water at an angle, when it will appear bent.

Refraction is that which enables light to be divided up, or analyzed. In this way white light from the sun is shown to be composed of seven principal colors.


If the light is passed through a prism, which is a triangularly shaped piece of glass, the rays on emerging will diverge from each other, and when they fall on a wall or screen the colors red, orange, yellow, green, blue, indigo and violet are shown

The reason for this is that the ray in passing through the prism has the different colors in it refract at different angles, the violet bending more than the red.

The Spectroscope

The ability to make what is thus called a spectrum, brought forth one of the most wonderful instruments ever devised by man. If any metal, or material, is fused, or put in such a condition that a ray of light can be obtained from it, and this light is passed through a prism, it will be found that each substance has its own peculiar divisions and arrangements of colors.

In this way substances are determined by what is called spectrum analysis, and it is by means of this instrument that the composition of the sun, and the planets and fixed stars are determined.

The Rainbow

The rainbow is one of the effects of refraction, as the light, striking the little globular particles of water suspended in the air, produces a breaking up of the white light into its component colors, and the sky serves as a background for viewing the analysis thus made.


It is now conclusively proven, that heat, like light, magnetism and electricity, is merely a mode of motion.

The mechanical theory of heat may be shown by rubbing together several bodies. Heat expands all substances, except ice, and in expanding develops an enormous force.


In like manner liquids expand with heat. The power of mercury in expanding may be understood when it is stated that a pressure of 10,000 pounds would be required to prevent the expansion of mercury, when heated simply 10 degrees.

Gases also expand. While water, and the different solids, all have their particular units of expansion, it is not so with gases, as all have the same coefficient