The manufacture of fabrics having woofs of different colors requires the use of several shuttles and boxes containing the different colors at the extremity of the driver's travel, in which these boxes are adjusted alternately either by a rectilinear motion, or by a rotary one when the boxes are arranged upon a cylinder. The controlling mechanism of the shuttles by means of draught and tie machines constitutes, at present, the most perfect apparatus of this nature, because they allow of a choice of any shuttles whatever.

THE GROSSENHAIN SHUTTLE DRIVER.
THE GROSSENHAIN SHUTTLE-DRIVER.

The apparatus constructed by the Grossenhainer Webstuhl und Maschinen Fabrik, of Grossenhain, and represented in the accompanying cut, is new as regards its general arrangement, although in its details it more or less resembles the analogous machines of Schönherr, Crompton, and Hartmann. The lifting of the shuttles is effected by two sectors, a, a, arranged on the two sides of the loom, and the rotary motion of which acts upon the box, c, by means of the lever, b, the box being caused to descend again by the spring, d. Parallel with the breast beam there is mounted an axle, e, and upon one of the extremities of this is fixed the sector, a, while the other extremity carries two fixed disks, f, f, two loose disks, f, f, and the sector, a, which is connected with the latter. The disks are kept in position by a brake, g. The pawls, h and h, are supported on a lever, i, on a level with the disks, and are connected with the cam, l, by the spring, k. This cam revolves with the axle of the loom and thrusts the pawls against the disk. A draught and tie machine controls the action of the pawls on the disks in such a way that, by the revolution of the sectors, a and a, the shuttle-boxes, I., II., III., are brought at the desired moment in the way of the driver. The pawls, h, are connected by wires with the bent levers, m, of the draught machine, which carry also the pawls, n. The upper position of the pawls, h, is limited by the direct resting of the levers, m, on the tappet, o, and the lower position by the resting of the pawls, n. The plates, p, held by the pattern, M, are set in motion horizontally by means of the eccentric, q, the crank, r, and the bent lever, s. The raised plates abut against the corresponding levers, m, and thus bring about the descent of the pawls, h, which are suspended from these levers. This position is maintained by the resting of the pawls, n, upon the tappet, o, until the lowering of the corresponding plate has set the pawl, n, free. The lever, m, then gives way to the action of the spring, t, and the pawl, h, rises again. The rotation of the cylinder which supports the design, M, is effected by the motion of the bent lever, s.