In a paper read before the Aix-la-Chapelle section of the Verein deutscher Ingenieure, Herr Robert Hasenclever presents a summary of the results obtained with various methods for the absorption of the sulphurous acid generated during the roasting of zinc-blende and other sulphurets. Though most of our own metallurgical works are not so located as to be forced to pay much attention to the removal of noxious vapors, the efforts made abroad possess some interest for American metallurgists. Besides containing sulphurous acid, the gases from the roasting furnaces hold varying quantities of sulphuric acid, and Dr. Bernoulli describes a process applied on a large scale in Silesian zinc works, where the gases were passed through towers filled with lime. It was found that there was no trouble on account of the absorption of carbonic acid by the lime, and that the latter acted very efficiently in reducing the quantity of sulphurous acid. Before entering the tower, they contained 0.258 per cent. by volume of sulphurous acid and 2.45 per cent. of carbonic acid; while, after their passage through it, they held 0.017 and 2.478 per cent, respectively. The process, however, is declared by Herr Hasenclever to be too costly for ordinary working, although he does not deny its value under special circumstances.

The removal of anhydrous sulphuric acid from the gases from roasting-furnaces has hitherto, as at the Waldmeister works, near Stolberg, been effected by means of water trickling down in a tower filled with coke, the gases entering below and moving upward. Herr Hasenclever tested the Freytag method, in which the water is replaced by sulphuric acid, and obtained favorable results, as shown by the following analyses of the gases before and after treatment. The figures given are grammes per 1,000 liters:

8.240.63 5.740.00
8.290.37 6.740.07
9.360.69 6.960.00
9.460.63 7.380.05
10.031.08 7.690.09
16.522.97 14.390.23
17.901.97 13.320.11
17.802.46 16.180.69

The average absorption for the first set of four analyses when three roasting-furnaces were discharging into the tower was 95 per cent. of the sulphuric acid, and that of the second set of four or five furnaces was 90 per cent. The amount of sulphuric acid charged per twenty-four hours was about 5,000 kilogrammes of 50 degrees Baumé, which flowed off with a density of from 56 to 58 degrees Baumé. The quantity of acid condensed varied according to the nature of the ores and the number of furnaces working. It ranged between 300 and 1,000 kilogrammes of 60 degrees Baumé per twenty-four hours. The condensation of anhydrous sulphuric acid would pay, according to estimates submitted by Herr Hasenclever; but to pass the gases through a tower filled with lime, in order to get rid of the remaining sulphurous acid, would prove too expensive at Stolberg. An attempt to use milk of lime proved partially successful; but it was not followed up, because it was decided to experiment with the process suggested by Prof. Cl. Winkler, of Freiberg, who proposes to pass the gases through a tower filled with iron in some suitable shape, over which water trickles. From the solution thus obtained, sulphurous acid pure enough to be used for the manufacture of sulphuric acid, sulphur, and a solution of green vitriol is made. Experiments with this process are making at Freiberg and at the Rhenania Works, near Stolberg. The trouble with the majority of methods thus far is, that the draught of the furnaces is so much impeded by the absorption towers that fans, blowers, or steam jets must be used to carry the gases through it.

The experience of Herr Hasenclever has proved how difficult it is to find a satisfactory means of removing the noxious vapors from furnace gases without incurring too serious an expense. Thus far the value of the products obtained by absorption of sulphurous acid has not been equal to the cost of producing them. Herr C. Landsberg, who is general manager of the Stolberg Company, has had similar experience, though his experiments were made to test methods suggested at various times by Dr. E. Jacob and Dr. Aarland. Both are very ingenious, and were successful on a small scale, but failed when tried in actual working.--Engineering and Mining Journal.