The following imperial ordinance was published on the 25th of March, 1877, by the chief of admiralty of the German marine. It has for its object the prevention and eradication of infectious diseases:

"In those places where infectious diseases, according to experience, are prevalent and unusually severe and frequent, it is necessary to abstain as much as possible from the employment of water taken from without the ship for cleansing said vessel, and also for washing out the hold when the water of the sea or of a river, in the judgment of the commander of a vessel, confirmed by the statement of the physician, is shown to be surcharged with organic matter liable to putrefaction. With this end in view, if you are unable to send elsewhere for suitable water, you must make use of good and fresh water, but with the greatest economy. In that event the purification of the hold must be accomplished by mechanical means or by disinfectants."

"As I have demonstrated by my investigations that in the distillation of paludal water, and that from the marshy shores of the sea, the Limnophysalis hyalina, which is impalpable, is carried away and may be detected again after the distillation, it must be insisted that the water intended to be used for drinking on shipboard shall be carefully filtered before and after its distillation."

The Klebs-Tommasi and Dr. Sternberg's report, as summarized in the Supplement No. 14, National Board of Health Bulletin, Washington, D.C., July 18, I would cordially recommend to all students of this subject.

I welcome these observers into the field. Nothing but good can come from such careful and accurate observations into the cause of disease. For myself I am ready to say that it may be that the Roman gentlemen have bit on the cause of the Roman fever, which is of such a pernicious type. I do not see how I can judge, as I never investigated the Roman fever; still, while giving them all due credit, and treating them with respect, in order to put myself right I may say that I have long ago ceased to regard all the bacilli, micrococci, and bacteria, etc., as ultimate forms of animal or vegetable life. I look upon them as simply the embryos of mature forms, which are capable of propagating themselves in this embryonal state. I have observed these forms in many diseased conditions; many of them in one disease are nothing but the vinegar yeast developing, away from the air, in the blood where the full development of the plant is not apt to be found. In diphtheria I developed the bacteria to the full form--the Mucor malignans.

So in the study of ague, for the vegetation which seems to me to be connected with ague, I look to the fully developed sporangias as the true plant.

Again, I think that crucial experiments should be made on man for his diseases as far as it is possible. Rabbits, on which the experiments were made, for example, are of a different organization and food than man, and bear tests differently. While there are so many human beings subject to ague, it seems to me they should be the subjects on whom the crucial tests are to be made, as I did in my labors.

As far as I can see, Dr. Sternberg's inquiries tend to disprove the Roman experiments, and as he does not offer anything positive as a cause of ague, I can only express the hope that he will continue his investigations with zeal and earnestness, and that he will produce something positive and tangible in his labors in so interesting and important a field.

I would then that all would join hands in settling the cause of this disease; and while I do not expect that all will agree with me, still, I shall respect others' opinions, and so long as I keep close to my facts I shall hope my views, based on my facts, will not be treated with disrespect.

Appendix

Gemiasma verdans and Gemiasma rubra collected Sept. 10, 1882, on Washington Heights, near High Bridge. The illustrations show the manner in which the mature plants discharge their contents.

Plate VIII. A, B, and C represent very large plants of the Gemiasma verdans. A represents a mature plant. B represents the same plant, discharging its spores and spermatia through a small opening in the cell walls. The discharge is quite rapid but not continuous, being spasmodic, as if caused by intermittent contractions in the cell walls. The discharge begins suddenly and with considerable force--a sort of explosion which projects a portion of the contents rapidly and to quite a little distance. This goes on for a few seconds, and then the cell is at rest for a few seconds, when the contractions and explosions begin again and go on as before. Under ordinary conditions it takes a plant from half an hour to an hour to deliver itself. It is about two-thirds emptied. C represents the mature plant, entirely emptied of its spore contents, there remaining inside only a few actively moving spermatia, which are slowly escaping. The spermatia differ from the spores and young plants in being smaller, and of possessing the power of moving and tumbling about rapidly, while the spores of young plants are larger and quiescent. D, E, F, and G represent mature plants belonging to the Gemiasma rubra. D represents a ripe plant, filled with spores, embryonic plants, and spermatia.

E represents a ripe plant in the act of discharging its contents, it being about half emptied. F represents a ripe plant after its spore and embryonic plant contents are all discharged, leaving behind only a few actively moving spermatia, which are slowly escaping. G represents the emptied plant in a quiescent state.

Figs. A, B, C represent an unusually large variety of the Gemiasma verdans. This species is usually about the size of the rubra. This large variety was found on the upper part of New York Island, near High Bridge, in a natural depression where the water stands most of the year, except in July, August, and September, when it becomes an area of drying, cracked mud two hundred feet across. As the mud dries these plants develop in great profusion, giving an appearance to the surface as if covered thickly with brick dust.

These depressions and swaily places, holding water part of the year, and becoming dry during the malarial season, can be easily dried by means of covered drains, and grassed or sodded over, when they will cease to grow; this vegetation and ague in such localities will disappear.

The malarial vegetations begin to develop moderately in July, but do not spring forth abundantly enough to do much damage till about the middle of August, when they in ague localities spring into existence in vast multitudes, and continue to develop in great profusion till frost comes.