Immediately on entering the Machinery Hall by the galerie leading from the central dome, and occupying a prominent position at the commencement of the Swiss section, is a very important plant of dynamos, motors, and steam engines, put down by the Oerlikon Works, of Zurich. During the time the machinery is kept running in the hall, power is supplied electrically to drive the whole of the main shafting in the Swiss section and part of that in the Belgian section, amounting in all to some 200 ft., a large number of machines of various industries deriving their power from these lines of shafting, while during the evening a portion of the upper and lower galleries adjoining this section is lit by some twenty-five arc lamps run from this exhibit. Steam is supplied from the Roser boilers in the motive power court. The whole of the generating plant is illustrated in one view, and a separate view is given of the motor employed to drive the main shafting, this latter view showing the details of connection to the same. On the extreme right hand side of the first view is a direct coupled engine and dynamo of 20 horse power, a separate cut of which is given in Fig. 3. The engine is of the vertical single cylinder type, standing 5 ft. high, and fitted, as are the other two engines exhibited, with centrifugal governor gear on the fly wheel, acting directly on the throw of the cutoff valve eccentric.

The two standards, supporting the cylinder and forming the guide bars, together with the entire field magnets and pole pieces of the dynamo, and the bed plate common to both, are cast in one piece.


The machine is specially designed for ship lighting, and with the view of preventing any magnetic effect upon the ship's compass, the field is arranged so that the armature, pole pieces, and coils are entirely inclosed by iron. Any tendency to leakage of magnetic lines will therefore be within the machine, the iron acting as a shield. This build of field - shown in Fig. 3a - is also advantageous as a mechanical shield to the parts of the machine most likely to suffer from rough handling in transport, and it will be seen that the field coils are easily slipped on before the armature is mounted in its bearings.


The winding is compound, and in such a direction that the two opposite horizontal poles have the same polarity; it follows from this that there will be two consequent poles in the iron, these being opposite in name to the horizontal poles and at right angles to them, viz., above and below the armature. Opposite sections of the commutator are connected together internally as in most four-pole machines, so that only two brushes are necessary, at 90 deg. apart.

The section of iron in the field is 60 square inches and rectangular in form, and the whole machine measures 4 ft. 3 in. in length, and 2 ft. in height, without including the height of the bed plate. The armature is 17 in. in length and the same in diameter, measured over the winding, and develops at the machine terminals 70 volts and 200 amperes at 480 revolutions. The moving parts of the engine are well balanced, and run remarkably well and without noise at this high rate of speed.

This dynamo serves to develop power to run a motor in an adjoining inclosure, containing some fine specimens of lathes and machine tools constructed by the Oerlikon Works. These are driven by the motor through the medium of a countershaft, and the power and speed are controlled from the switch board seen at the left of the exhibit, and in Fig. 11. The resistance, R, serves to vary the intensity of the shunt field of the dynamo, the volts being indicated by the voltmeter V, and a resistance separate from the switch board is inserted in the main circuit of the two machines. The ammeter, A, is directly connected to the dynamo, and therefore indicates the current, whatever circuit this machine is running.

Figs. 5, 6, 7, 8, 9, 11 and

A larger combined engine and dynamo, seen in the center of the stand, serves to run the lighting of the galleries. The engine is a 60 horse power compound, running at 350 revolutions, and fitted with a governor on the fly wheel, like that described above.

The dynamo is a two-pole machine, the upper pole and yoke being cast in one, and the lower pole, yoke, and combined bed plate forming a separate casting. The two vertical cores, over which the field bobbins are slipped, are of wrought iron, and are turned with a shoulder at either end, the yokes being recessed to fit them exactly. The cores are then bolted to the yokes vertically from the top and horizontally below. The field of this machine is shunt-wound, and in order to maintain the potential constant a hand-regulated resistance - R on the switch board - is added in circuit with the shunt field. The voltmeter, V, immediately above this resistance, serves to indicate the difference of potential at the machine terminals. Both voltmeters are fitted with keys, so that they are only put in circuit when the readings are taken.

The main terminals of this machine are fitted on substantial insulating bases, fixed one at each end of the top yoke. These connect to the external circuit by a heavy cable - the machine being capable of developing 500 amperes - and to the shunt circuit, and regulating resistance by small wires; while the two connections to the brushes are by four covered wires in parallel on each side. This mode of connection is more flexible than a short length of heavy cable, and looks well, the wires being held neatly together by vulcanized fiber bridges. The dynamo is a low tension machine, the field being regulated to give 65 volts when running the lamp circuits.