Having had control of the apparatus for several months, and, with the aid of a reliable assistant, having checked everything that went in and came out of the generator, I am in a position to state authoritatively that, using ordinary gas coke and a petroleum of specific gravity ranging from 0.689 to 0.709, 1,000 cubic feet of gas, having an illuminating power of twenty-two candles, can be made with an expenditure of 28 to 32 lb. of coke and 21/2 gallons of petroleum. The most important factors, i.e., the quantity of petroleum and the illuminating value of the gas, have also been checked and corroborated by Mr. Heisch and Mr. Leicester Greville.

Total gas made = 8,700 cubic feet.
Time taken: Blowing.1 hour.
Time taken: Making.50 minutes.
Fuel used: Gas coke.270 lb. = 31 lb. per 1,000 c.f.
Fuel used: Naphtha, sp. gr. 0.709.34 gals. = 2.7 gals. per 1,000 c.f.
Illuminating power of gas = 21.9 candles.

I must admit that these results far exceeded my expectations, although they only confirmed the figures claimed by the patentee; and there are not wanting indications that, when worked on a large scale and continuously, they might be even still further lowered, as it is impossible to obtain the most economical results when making less than 10,000 cubic feet of the gas, as the proper temperature of the walls of the generator are not obtained until after several makes; and it is only after about 8,000 cubic feet of gas has been made that the best conditions are fulfilled.

It will enable a sounder judgment to be formed of the working of the process if the complete experimental figures for a make of gas be taken.

COMPOSITION OF THE GAS.
Hydrogen.46.75
Olefines.7.59
Ethane. 6.82
Methane.11.27
Carbon monoxide.11.65
Carbon dioxide.0.50
Oxygen.0.17
Nitrogen. 8.25
- - -
100.00

UNPURIFIED GAS CONTAINED
Carbon dioxide.2.32 per cent.
Sulphureted hydrogen.2.84 per cent.
Total sulphur per 100 cu. ft.= 6.67 per cent
Ammonia. nil
Bisulphide of carbon. nil

Gas produced Naphtha used
Gals. Pts.
1st. Make. 3,600 cu. ft. 10 7
2d. Make. 2,800 cu. ft. 7 6
3d. Make. 2,300 cu. ft. 5 3
- - - -
8,700 24 0

The last portion of the table shows the economy which arises as the whole apparatus gets properly heated. Thus the first make used 3 gallons naphtha per 1,000 cubic feet, the second 2 gallons 6 pints per 1,000 cubic feet, and the third 2 gallons 4 pints per 1,000 cubic feet, and it is, therefore, not unreasonable to suppose that in a continuous make these figures could be kept up, if not actually reduced still lower.

In introducing the oil it is not injected, but is simply allowed to flow in by gravity, at a point about half way up the column of fuel, the taps for its admission being placed at intervals around the circumference of the generator, and oil at first begins to flow down the inside wall of the generator, but being vaporized by the heat, the vapor is borne up by the rush of steam and water gas, and is cracked to a permanent gas in the upper layer of fuel. This I think is the secret of not being able to use heavier grades of oil, these being sufficiently non-volatile to trickle down the side into the fire box at the bottom, and so to escape volatilization. I have tried to steam-inject the oil, but have not found that it yields any better results.

One of the first things that strikes any one on seeing a make of gas by this system is the enormous rapidity of generation. Mr. Leicester Greville, who is chemist to the Commercial Gas Company, in reporting on the process, says, "The make of gas was at the rate of about 86,000 cubic feet in 24 hours. A remarkable result, taking into consideration the size of the apparatus." It is quite possible, with the small apparatus, to make 100,000 cubic feet in 24 hours; indeed the run for which the figures are given are over this estimate; and it must be borne in mind that this rapidity of make gives the gas manager complete control over any such sudden strains as result from fog or other unexpected demands on the gas-producing power of his works; while a still more important point is that it does away with the necessity of keeping an enormous bulk of gas ready to meet any such emergency, and so renders unnecessary the enormous gasholders, which add so much to the expense of a works, and take up so much room.

Perhaps the greatest objection to water gas in the public mind is the dread of its poisonous properties, due to the carbon monoxide which it contains; but if we come to consider the evidence before us on the increase of accidents due to this cause, we are struck by the poor case which the opponents of water gas are able to make out. No one can for a moment doubt the fact that carbon monoxide is one of the deadliest of poisons. It acts by diffusing through the air cells of the lungs, and forming, with the coloring matter of the blood corpuscles, a definite compound, which prevents them carrying on their normal function of taking up oxygen and distributing it throughout the body, to carry on that marvelous process of slow combustion which not only gives warmth to the body, but also removes the waste tissue used up by every action, be it voluntary or involuntary, and by hindering this, it at once stops life.

All researches on this subject point to the fact that something under one per cent. only of carbon monoxide in air renders it fatal to animal life, and this at first seems an insuperable objection to the use of water gas, and has, indeed, influenced the authorities in several towns, notably Paris, to forbid its introduction for domestic consumption. Let us, however, carefully examine the subject, and see, by the aid of actual figures, what the risk amounts to compared with the risks of ordinary coal gas.

Many experiments have been made with the view of determining the percentage of carbon monoxide in air which is fatal to human or, rather, animal life, and the most reliable as well as the latest results are those obtained by Dr. Stevenson, of Guy's Hospital, in consequence of the two deaths which took place at the Leeds forge from inhaling uncarbureted water gas containing 40 per cent. of carbon monoxide. He found that one per cent. visibly affected a mouse in one and a half minutes, and in one hour and three quarters killed it, while one-tenth of a per cent. was highly injurious. Let us, for the sake of argument, take this last figure 0.1 per cent. as being a fatal quantity, so as to be well within the mark.

In ordinary carbureted water gas as supplied by the superheater processes, such as the Lowe, Springer, etc., the usual percentage of carbon monoxide is 26 per cent., but in the Van Steenbergh gas - for certain chemical reasons to be discussed later on - it is generally about 18 per cent., and rarely rises to 20 per cent. An ordinary bedroom will be say 12 ft. X 15 ft. X 10 ft., and will therefore contain 1,800 cubic feet of air, and such a room would be lighted by a single bats-wing burner consuming not more than four cubic feet of gas per hour. Suppose now the inmate of that room retires to bed in such a condition of mental aberration that he prefers to blow out the gas rather than take the ordinary course of turning it off - a process, by the way, of putting out gas which is decidedly easier in theory than in practice, especially in his presumed mental condition - you would have in one hour the 1,800 cubic feet of gas in the room mixed with four fifths of a cubic foot of carbon monoxide - the carbureted water gas being supposed to contain 20 per cent. - or 0.04 per cent.