Various methods of arriving at comparative values have been tried, but the figures are very variable, as will be seen by the following tables. Berthelot's commission, some ten years ago, exploded ten to thirty grammes of each in 300 pound blocks of lead and measured the increased size of the hole thus made. The relative result was:

No. 1 dynamite1.0
Dry gun-cotton1.17

Powder blew out and could not be measured.

Mr. R.C. Williams, at the Boston Institute of Technology, in the winter of 1888 and 1889, tried the same method, but used six grammes in forty-five pound blocks of lead. He obtained a relative result of -

No. 1 dynamite1.0
Dry gun-cotton1.37
Explosive gelatine2.57
Forcite gelatine2.7
Warm nitro-glycerine 2.7

The powder gave great trouble in this case, also, by blowing out.

M. Chalon, a French engineer, obtained some years ago, with a small mortar, firing a projectile of thirty kilos and using a charge of ten grammes of each explosives, the following ranges:

Blasting powder2.6
No. 1 dynamite31.4
Forcite of 75 per cent. N.G.43.6
Blasting gelatine45.0

Roux and Sarran obtained by experiments in bursting small bomb shells the following comparative strengths of ranges:


In actual blasting work the results vary altogether with the nature of the material encountered, and with the result that is desired to be accomplished, viz., throwing out, shattering, or mere displacement.

Chalon gives for quarrying:

Powder 1
Dynamite No. 2, containing 50 per cent. nitro-glycerine3

For open blasting:

Dynamite No. 3, containing 30 per cent. N.G.1.0
Dynamite No. 1, containing 75 per cent. N.G.2.5
Blasting gelatine3.5

For tunneling:

Dynamite No. 3, containing 30 per cent. N.G1
Dynamite No. 1, containing 75 per cent. N.G3
Explosive gelatine19

Finally Berthelot's theoretical calculations give a specific pressure of -

Blasting gelatine17

It will be observed that the practical results vary largely from the theoretical values, but they seem to indicate that gun-cotton and No. 1 dynamite are very nearly equal to each other, and that in the nitro-glycerine compounds, except where gun-cotton is added, the force appears to be nearly in proportion to the nitro-glycerine contained. From the foregoing it seems fair to estimate roughly the values of bursting charges of shells as follows:

Gun-cotton and dynamite6 to 10
Nitro-glycerine13 to 15
Blasting gelatine15 to 17

Attention has been turned in Europe for more than thirty years toward firing high explosives in shells; but it is only within very late years that results have been reached which are claimed as satisfactory, and it is exceedingly difficult to obtain reliable accounts even of these. Dynamite was fired in Sweden in 1867 in small quantities, and a few years later it was fired in France. But two difficulties soon presented themselves. If the quantity of nitro-glycerine in dynamite was small, it could be fired in ordinary shells, but the effect was no better than with gunpowder. If the dynamite was stronger in nitro-glycerine, it took but a small quantity to burst the gun.

As early as 1864, dry gun-cotton was safely fired in shells in small quantities, but when a sufficient quantity to fill the shell cavity was used, the gun burst. Some few years ago it was found that if the gun-cotton was either wet or soaked in paraffin, it could be fired with safety from powder guns in ordinary shells, provided the quantity was small in proportion to the total weight of the shell - say five or six per cent. But a new difficulty arises from the fact that it breaks the shell up into very small pieces, and it is an unsettled question among artillerists whether more damage is done to an enemy by breaking a shell into comparatively large pieces and dispersing them a long distance with a bursting charge of powder, which has a propulsive force, or by breaking it with a detonating compound into fine pieces, which are not driven nearly so far. When used against troops there is also the objection to the high explosive shell that it makes scarcely any smoke in bursting, and smoke at this point is useful to the artillerist in rectifying his aim.

In the matter of shells for piercing armor, however, there are no two opinions regarding the nature of the bursting charge. To pierce modern armor at all a shell must be made of forged steel, so thick that the capacity of the cavity for the bursting charge is reduced to one-fourth or one-fifth of what it is in the common shell; the result is that a charge of powder is frequently not powerful enough to burst the shell at all; it simply blows the plug out of the filling hole in the rear. In addition it is found that in passing through armor, the heat generated is so great that the powder is prematurely ignited.

If then we can fill the small cavity in the shell with an explosive which will not ignite prematurely, and yet will burst the shell properly after it has passed through the armor, the problem will be solved. Wet or paraffined gun-cotton can be made sluggish enough to satisfy the first condition; but at present the difficulty is to make it explode at all. The more sluggish the gun-cotton, the more powerful must be the fuse exploders to detonate it, and such exploders are themselves liable to premature ignition in passing through the armor.

The Italians and Germans claim to have accomplished the desired result up to a thickness of five inches of armor; gun-cotton and fuse both working well. But the English authorities say that no one has yet accomplished it. The Austrians claim to have succeeded in this direction within the last year with a new explosive called ecrastite (supposed to be blasting gelatine combined with sulphate or hydrochlorate of ammonia, and claimed to be one and one-half times as powerful as dynamite).

With a gun of 8.24 inches caliber and an armor-piercing shell weighing 206.6 pounds, containing a bursting charge of 15.88 pounds of ecrastite, they are said to have perforated two plates four inches thick, and entered a third four-inch plate where the shell exploded. There is a weak point in this account in the fact that the powder capacity of the shell is said to be 4.4 pounds.

This amount is approximately correct, judging from our own eight-inch armor-piercing shell, but if this is true, there could not have been more than nine pounds of ecrastite in the shell instead of sixteen, or else there is an exceedingly small proportion of blasting gelatine in ecrastite, and if that is the case it is not one and one-half times as powerful as dynamite. If it is weak stuff, it is probably insensitive, and even if it were strong, one swallow does not make a summer. The English fired quantities of blasting gelatine from a two-inch Nordenfeldt gun in 1884, but when they tried it in a seven-inch gun, in 1885, they burst the gun at once.

I have only analyzed this Austrian case, because the statement is taken from this year's annual report of the Office of Naval Intelligence, which is an excellent authority, and to illustrate the fact that of the thousands of accounts, which we see in foreign and domestic newspapers, concerning the successful use of high explosives in shells, fully ninety per cent. are totally unreliable. In many cases they are in the nature of a prospectus from the inventors of explosives or methods of firing, who are aware of the fact that it is almost impossible to dispute any statements that they may choose to make regarding the power of their new compounds, and thinking, as most of them do, that power alone is required.

Referring to the qualities that I have previously cited as being required in a high explosive for military purposes, it is sooner or later found that nearly all the novelties proposed lack some of the essentials and soon disappear from the advertising world only to be succeeded by others. The most common defect is lack of keeping qualities. They will either absorb moisture or will evaporate; or further chemical action will go on among the constituents, making them dangerously sensitive or completely inert, or they will separate mechanically according to their specific gravities.

For further clearness on the subject of the shell charges which have so far been discussed, the following table is added of weight and sizes of shells for United States naval guns, with their bursting charges of powder:

 6-inch com. cast steel shell 31/2 to 4 cal. long, wt. 100 lb., charge 6 lb.

8 " " " " " 250 " 141/2 lb.

10 " " " " " 500 " 27 "

12 " " " " " 850 " 45 " 


 6-inch, 3 calibers long, weight 100 lb, charge 11/2 lb.

8 " " " 250 " 3 "

10 " " " 500 " 51/2 "

12 " " " 850 " 11 " 

The chief efficiency of small quantities of high explosives having reduced itself to the case of armor-piercing projectiles, it next became evident that there was an entirely new field for high explosives into which powder had entered but little, and this was the introduction of huge torpedo shells, which did nor rely for their efficiency upon the dispersion of the pieces of the shell, but upon the devastating force of the bursting charge itself upon everything within the radius of its explosive effect. It is in this field that we may look for the most remarkable results, and it is here that the absolute power of the explosive thrown is of the utmost importance, provided that it can be safely used. Attention was at once turned in Europe to the manufacture of large projectiles with great capacity for bursting charges, and it has resulted in the production of a class of shells 41/2 to 6 calibers long, with walls only O.4 of an inch thick. (If they are made thinner, they will swell and jam in the gun when fired.)

These shells are used in long guns up to 6 and 81/2 inches caliber, and in mortars up to 11.2 inches. They are made from disks of steel, 3 to 4 feet in diameter and 1 inch thick, and are forced into shape by hydraulic presses. The base is usually screwed in, but some of the German shell are made in two halves which screw together. The Italians were the first in this new field of investigation, but the Germans soon followed, and after trying various materials were at length reasonably successful with gun-cotton soaked in paraffin. Their 8.4 inch mortar shells of 5 calibers contain 42 pounds; those of 6 calibers contain 57 pounds; and the 11.2 inch mortar shells of 5 calibers contain 110 pounds.

The projectile velocity used with the mortars is about 800 f.s. The effect of these shells against ordinary masonry and earth fortifications is very great. The charge of forty-two pounds has broken through a masonry vault of three feet four inches thick, covered with two feet eight inches of cement and with three to five feet of earth over all. The shell containing fifty-seven pounds, at a range of two and one-half miles, broke through a similar vault covered with ten feet of earth; but with seventeen feet of earth the vault resisted. In 1883, experiments at Kummersdorf showed that a shell containing the fifty-seven pound charge would excavate in sand a crater sixteen feet in diameter and eight feet deep, with a capacity of twenty-two cubic yards. The Italians have had similar experiences; but it is notable that in both Germany and Italy several guns and mortars have burst. The velocity in the guns is not believed to exceed 1,200 to 1,300 f.s., and it is not thought that the quantity of gun-cotton is as great in the gun shells as in the mortars.

I have lately been informed on good authority that the use of gun-cotton shells has been abandoned in the German navy as too dangerous.

The French, in their investigations in this field, found gun-cotton too inconvenient, and decided upon melenite. This substance has probably attracted more attention in the military world than all others combined, on account of the fabulous qualities that have been ascribed to it. Its composition was for a long time entirely a secret; but it is now thought to consist principally of picric acid, which is formed by the action of nitric acid upon phenol or phenyillic alcohol, a constituent of coal tar. The actual nature of melenite is not positively known, as the French government, after buying it from the inventor, Turpin, are said to have added other articles and improved it. This is probable, since French experiments in firing against a partially armored vessel, the Bellequense, developed an enormous destructive effect, while the English, who afterward bought it, conducted similar experiments against the Resistance, and obtained no better results than with powder. The proof that the Bellequense experiments were deemed of great value by the French lies in the fact that they immediately laid down a frigate - Dupuy de Lome - in which four-inch armor is used, not only on the side, but about the gun stations, to protect the men; this thickness having been found sufficient to keep out melenite shell.

In most armorclads, the armor is very heavy about the vitals, but the guns are frequently much exposed.

The best authenticated composition for melenite consists of picric acid, gun cotton and gum arabic, and lately it is stated that the French have added cresilite to it. Cresilite is another product of coal tar. Melenite is normally only three times as strong as gunpowder; but it is said to owe its destructive qualities in shells to the powerful character of the exploder which ignites it. It has been known for some years that all explosives (including gunpowder) are capable of two orders of explosion according as they are merely ignited or excited by a weak fuse or as they are powerfully shocked by a more vigorous excitant. Fulminate of mercury has been found most serviceable for the latter purpose. With melenite the French have reproduced all the results that the Germans have effected with gun-cotton and have found that a shell containing 119 pounds of it will penetrate nearly ten feet of solid cement, but will not penetrate armored turrets six to eight inches thick. The French claim that melenite has an advantage over gun-cotton in not being so dangerous to handle and being insensible to shock or friction, and they have obtained a velocity of 1,300 f.s. with the 88 inch mortar and claim to have obtained 2,000 f.s. in long guns up to 62 inch caliber.

However this may be, they are known to have had severe accidents at the manufactory at Belfort and at least one 56 inch gun was burst at the Bellequense experiments in firing a sixty-six pound shell containing twenty-eight pounds of melenite. The French are said to have large quantities of melenite shells in store, but they are not issued to service.

Probably one reason why we have so many conflicting yet positive accounts of great successes in Europe with torpedo shells is because each nation wishes its neighbors to think that it is prepared for all eventualities, and they are obliged to keep on hand large quantities of some explosive, whether they have confidence in it or not. Fortunately we are not so situated, but singularly enough what we have done in the field of high explosive projection has been accomplished by private enterprise, and we have attacked the problem at exactly the opposite point from which European nations have undertaken it. While they have assumed that the powder gun with its powerful and relatively irregular pressures was a necessity and have endeavored to modify the explosive to suit it, we have taken the explosive as we have found it, and have adapted the gun to the explosive. At present the prominent weapon in this new field is the pneumatic gun, but it is obvious that steam, carbonic acid gas, ammonia or any other moderate and regulatable pressure can be used as well as compressed air; it is merely a question of mechanical convenience.

In throwing small quantities of certain high explosives, powder guns can be used satisfactorily, but when large quantities are required, the mechanical system of guns possess numerous advantages. All the high explosives are subject to premature detonation by shock; each of them is supposed to have its own peculiar shock to which it is sensitive; but what this shock may be is at present unknown. We do know, however, that premature explosions in guns are more liable to occur when the charge in the shell is large than when it is small. This is due to the fact that when the gun is fired, the inertia of the charge in the shell is overcome by a pressure proportional to the mass and acceleration, which pressure is communicated to the shell charge by the rear surface of the cavity, and the pressure per unit of mass will vary inversely as this surface. If, then, the quantity of explosive in the shell forms a large proportion of the total weight of the shell, we approach in powder guns a condition of shock to it which is always dangerous and frequently fatal.

The pressure behind the projectile varies from twelve to fifteen tons per square inch, but it is liable to rise to seventeen and eighteen tons, and in the present state of the manufacture of gunpowder we cannot in ordinary guns regulate it nearer than that. It is not a matter of so much importance so far as the guns are concerned, when using ordinary projectiles, as the gun will endure a pressure of from twenty-five to thirty tons per square inch; but with high explosives in the shell it is a vitally serious matter. From all I can learn regarding European practice, it appears that not only are the explosives made sluggish, but the quantity seldom exceeds thirty per cent. of the weight of the shell, and the velocities, notwithstanding, are kept very low. In the pneumatic gun the velocity is low also, but so is the pressure in the gun. The pressure in the firing reservoir is kept at the relatively low figure of 1,000 pounds per square inch or less, and the air is admitted to the chamber of the gun by a balance valve which cuts off just the quantity of air (within a very few pounds) that is required to make the shot. The gun is long, and advantage is taken of the expansion of the air.

In no case can the pressure rise in the gun beyond that in the reservoir.

Up to the present time there have been no accidents in using the most powerful explosives in their natural state, and in quantities over fifty per cent. of the weight of the projectile. I have seen projectiles weighing 950 pounds, and containing 500 pounds of explosives (300 pounds of the blasting gelatine and 200 pounds of No. 1 dynamite) thrown nearly a mile and exploded after disappearing under water. According to Gen. Abbot's formula such a projectile would have sunk any armorclad floating within forty-seven feet of where it struck. Apparently there is no limit to the percentage of explosive that can be placed in the shell except the mechanical one of having the walls thick enough to prevent being crushed by the shock of discharge. In the large projectiles a transverse diaphragm is introduced to strengthen the walls and to subdivide the charge.

The development of the pneumatic gun has been attended with some other important discoveries, which may be of interest. It is well known that mortar fire is very inaccurate, except at fixed long distances, in consequence of the high angle, the slowness of flight of the projectile, the variability of the powder pressure, and the inability to change the elevation and the charge of powder rapidly. In the pneumatic gun, the complete control of the pressure remedies the most important of the mortar's defects and makes the fire accurate from long ranges down to within a few yards of the gun. It is obvious that the pressure can be usefully controlled in two ways: (1) by keeping the elevation of the gun fixed and using a valve that can be set to cut off any quantity of air, according to the range desired; (2) by keeping the pressure in the reservoir constant, and using a valve which will cut off the same quantity of air every time, changing the elevation of the gun according to the distance. Another important discovery consists in the application of subcalibered projectiles for obtaining increased range.

The gun is smooth-bored and a full-sized projectile is a cylinder with hemispherical ends, to the rear of which is attached a shaft having metal vanes placed at an angle, which causes the projectile to revolve round its longer axis during flight. A subcalibered projectile, however, being of less diameter than the bore of the gun, has the vanes on its exterior, and is held in the axis of the gun by means of gas checks which drop off as the projectile leaves the muzzle. The shock to the explosive is, of course, greater than in the full-sized projectile, but the increase can be calculated, and so far a dangerous limit has not been reached. From the fifteen-inch gun with a pressure of 1,000 pounds per square inch and a velocity of about 800 f.s., a range of 4,000 yards has been obtained at an elevation of 30° 20, with a ten-inch subcalibered projectile, about eight calibers long and weighing 500 pounds. This projectile will contain 220 pounds of blasting gelatine. With improved full-sized projectiles weighing 1,000 pounds, a range of 2,500 yards will doubtless be obtained.

At elevations below 15° these long projectiles are liable to ricochet, and what is now wanted is a projectile which will stay under water at all angles of fall and will run parallel to the surface like a locomotive torpedo. Such a projectile has yet to be invented; but I have seen a linked shell, which has been experimented with from a nine-inch powder gun, that partially meets this condition. It is made of several sections united by means of rope or electric wire in lengths of 100 to 150 feet. When fired all sections remain together for some distance; the rear section then first begins to separate; then the next, and so on. It is primarily intended to envelop an enemy's vessel, and to remedy the present uncertainty of elevation in a gun mounted in a pitching boat; but it is found that when it strikes the water in its lengthened out condition, it will neither dive nor ricochet, but will continue for some distance just under the surface until all momentum is lost, when it will sink. This projectile is at present crude, and has never been tried loaded, but it will probably be developed into something useful in time.

I have confined my remarks in the foregoing discussion principally to such methods of using high explosives in shells as have proved themselves successful beyond an experimental degree, and practically they reduce themselves to two, viz., using a sluggish explosive in small quantities from an ordinary powder gun, and using any explosive from a pneumatic or other mechanical gun. Naturally, the success of the latter method will soon induce the manufacture of powders having an abnormally low maximum pressure. There is undoubtedly a field for the use of such powders in connection with an air space in the gun to still further regulate the pressure; but nothing of this sort has yet been attempted. Many methods of padding the shell have been devised for reducing the shock in powder guns, but the variability of the powder pressure is too great to have yet rendered any such method successful. A method was patented by Gruson in Germany of filling a shell with the two harmless constituents of an explosive and having them unite and explode by means of a fulminate fuse on striking an object. He used for the constituents nitric acid and dinitro-benzine, and was quite successful; but the system has not met with favor, on account of the inconvenience.

The explosive was about four times as powerful as gunpowder.

That the advantage of using the most powerful explosives is a real one can be easily shown. The eight inch pneumatic gun in New York harbor, with a projectile containing fifty pounds of blasting gelatine and five pounds of dynamite, easily sunk a schooner at 1,864 yards range from the torpedo effect of the shell falling alongside it.

This same shell, if filled with gunpowder, would have contained but twenty-five pounds, and have had but one-ninth the power.

The principal European nations are now building armored turrets sunk in enormous masses of cement, as a result of their experiences with gun-cotton and melenite. The fifteen inch pneumatic projectile, which I described as being capable of sinking an armorclad at forty-seven feet from where it struck, would have been capable of penetrating fifty feet of cement had it struck upon a fortification. It was not only a much larger quantity of high explosive than Europeans have experimented with, but the explosive itself is probably more than twice as strong as their gun-cotton and five or six times as strong as their melenite. In the plans of Gen. Brialmont, one of the most eminent of European engineers, he allows in his fortifications about ten feet of cement over casements, magazines, etc. It is evident that this is insufficient for dynamite shells such as I have described.

At Fort Wagner, a sand work built during our war, Gen. Gillmore estimated that he threw one pound of metal for every 3.27 pounds of sand removed. He fired over 122,230 pounds of metal, and one night's work would have repaired the damage. The new fifteen inch pneumatic shell will contain 600 pounds of blasting gelatine, and judging from the German experiments at Kummsdorf, which I have cited, one of these fifteen inch shells would throw out a prodigious quantity of sand; either 500 pounds to one of shell, or 2,000 pounds to one of shell, according as the estimate of Gen. Abbot or of Capt. Zalinski is used. The former considers that the radius of destructive effect increases as the square root of the charge; the latter that the area of destructive effect for this kind of work is directly proportional to the charge.

The effect of the high explosives upon horizontal armor is very great; but we have yet to learn how to make it shatter vertical armor. No fact about high explosives is more curious than this, and there is no theory to account for it satisfactorily. As previously stated, the French have found that four inches of vertical armor is ample to keep out the largest melenite shells, and experiments at Annapolis, in 1884, showed that masses of dynamite No. 1, weighing from seventy-five to 100 pounds, could be detonated with impunity when hung against a vertical target composed of a dozen one inch iron plates bolted together.

In conclusion, I may say that in this country we are prone to think that the perfection of the methods of throwing high explosives in shell is vastly in favor of an unprotected nation like ourselves, because we could easily make it very uncomfortable for any vessels that might attempt to bombard our sea coast cities.

This is true as far as it goes, but unfortunately the use of high explosives will not stop there. I lately had explained to me the details of a system which is certainly not impossible for damaging New York from the sea by means of dynamite balloons. The inventor simply proposed to take advantage of the sea breeze which blows toward New York every summer's afternoon and evening. Without ever coming in sight of land, he could locate his vessel in such a position that his balloons would float directly over the city and let fall a ton or two of dynamite by means of a clock work attachment. The inventor had all the minor details very plausibly worked out, such as locating by means of pilot balloons the air currents at the proper height for the large balloons, automatic arrangements for keeping the balloon at the proper height after it was let go from the vessel, and so on. His scheme is nothing but the idea of the drifting or current torpedo, which was so popular during our war, transferred to the upper air.

An automatic flying machine would be one step farther than this inventor's idea, and would be an exact parallel in the air to the much dreaded locomotive water torpedo of to-day. There seems to be no limit to the possibilities of high explosives when intelligently applied to the warfare of the future, and the advantage will always be on the side of the nation that is best prepared to use them.

[1]A lecture delivered before the Franklin Institute, Philadelphia, November 28, 1890. From the Journal of the Institute.