With the advent of the steam engine as prime mover in mills, and the introduction of the turbine wheel with its trunk, affording greater facilities in the application of water power, the character of these buildings changed very materially, though still retaining many of their old features. One of the first of these changes may be noticed in the consideration which millwrights gave to the problem of fixing upon the dimensions of a mill so as to arrange the machinery in the most convenient manner. Although the floors were still hollow, there was a better distribution of material, the joists being deeper, of longer span, and resting upon the beams, thus avoiding the pernicious method of wasting lumber, and guarding against fracture by tenoning joists into the upper side of beams.

But this secondary type of mills was not honest in the matter of design. The influence of architects who attempted effects not accordant with or subservient to the practical use of the property is apparent in such mills. The most frequent of these wooden efforts at classic architecture was the common practice of representing a diminutive Grecian temple surrounding a factory bell perched in mid air. There were also windows with Romanesque arches copied from churches, and Mansard roofs, exiled from their true function of decorating the home, covering a factory without an answering line anywhere on its flat walls.

I do not mean to criticise any of these elements of design in their proper place and environment; but utility is the fundamental element in design, and should be especially noticeable in a building constructed for industrial purposes, and used solely as a source of commercial profit in such applications. Its lines therefore fulfill their true function in design in such measure as they suggest stability and convenience; and this can be obtained in such structures without the adoption of bad proportions offensive to the taste. In fact, certain decorative effects have been made with good results; but these have been wholly subordinate to the fundamental idea of utility.

The endurance with which brick will withstand frost and fires, and the disintegrating forces of nature, in addition to its resistance to crushing and the facility of construction, constitute very important reasons for its value for building purposes. But the use of this has been too often limited to plain brick in plain walls, whose monotony portrayed no artistic effect beyond that furnished by a few geometrical designs of the most primitive form of ornament, and falling far short of what the practice of recent years has shown to be possible with this material.

Additions of cast iron serve as ornaments only in the phraseology of trade catalogues; and the mixture of stone with brick shows results in flaring contrasts, producing harsh dissonance in the effect. The facades of such buildings show that this is brick, this is stone, or this is cast iron; but they always fail to impress the beholder with the idea of harmonious design. The use of finer varieties of clay in terra cotta figures laid among the brickwork furnishes a field of architectural design hardly appreciated. The heavy mass of brick, divided by regular lines of demarkation, serves as the groundwork of such ornamentation, while the suitable introduction in the proper places of the same material in terra cotta imparts the most appropriate elements of beauty in design; for clay in both forms shows alike its capacity for utility and decoration. The absorption of light by both forms of this material abates reflection, and renders its proportions more clearly visible than any other substance used in building construction.

The modern mill has been evolved out of the various exacting conditions developed in the effort to reduce the cost of production to the lowest terms. These conditions comprise in a great measure questions of stability, repairs, insurance, distribution of power, and arrangement of machinery.

In presenting to your attention some of the salient features of modern mill construction, I do not assume to offer a general treatise upon the subject; but propose to confine myself to a consideration of some topics which may not have been brought to your notice, as they are still largely matters of personal experience which have not yet found their way into the books on the subject. Much of this, especially the drawings thrown on the screen, is obtained from the experience of the manufacturers' mutual insurance companies, with which I am connected. By way of explanation, I will say that these companies confine their work to writing upon industrial property; and there is not a mechanical process, or method of building, or use of raw material, which does not have its relation to the question of hazard by fire, by reason of the elements of relative danger which it embodies.

It is indeed fortunate that it has been found by experience that those methods of building which are most desirable for the underwriter are also equally advantageous for the manufacturer. There is no pretense made at demands to compass the erection of fireproof buildings. In fact, as I have once remarked, a fireproof mill is commercially impossible, whatever effort may be made to overcome the constructive difficulties in the way of erecting and operating a mill which shall be all that the name implies. The present practice is to build a mill of slow burning construction.


In considering the elements of such buildings, I wish to devote a few words to the question of foundations, because in the excessive loads imposed by this class of buildings, and in the frequent necessity of constructing them upon sites where alluvial drift or quicksands form compressible foundations, there is afforded an opportunity for the widest range of engineering skill in dealing with the problem. In such instances, a settling of the building must be foreseen and provided for, in order that it may be uniform under the whole structure. This is generally accomplished by means of independent foundations under the various points of pressure, arranged so as to give a uniform intensity of pressure upon all parts of the foundation. It is considered important to limit the load upon such foundations to two tons a square foot, although loads frequently exceed this amount.