Fig. 31.  Douro Viaduct. Fig. 31. - Douro Viaduct.

Fig. 31 shows the Douro viaduct of a total length of 1158 ft. carrying a railway 200 ft. above the water. The span of the central opening is 525 ft. The principal rib is crescent-shaped 32.8 ft. deep at the crown. Rolling load taken at 1.2 ton per ft. Weight of centre span 727 tons. The Luiz I. bridge is another arched bridge over the Douro, also designed by T. Seyrig. This has a span of 566 ft. There are an upper and lower roadway, 164 ft. apart vertically. The arch rests on rollers and is narrowest at the crown. The reason given for this change of form was that it more conveniently allowed the lower road to pass between the springings and ensured the transmission of the wind stresses to the abutments without interrupting the cross-bracing. Wire cables were used in the erection, by which the members were lifted from barges and assembled, the operations being conducted from the side piers.

Fig. 32.  Niagara Falls and Clifton Bridge. Fig. 32. - Niagara Falls and Clifton Bridge.

The Niagara Falls and Clifton steel arch (fig. 32) replaces the older Roebling suspension bridge. The centre span is a two-hinged parabolic braced rib arch, and there are side spans of 190 and 210 ft. The bridge carries two electric-car tracks, two roadways and two footways. The main span weighed 1629 tons, the side spans 154 and 166 tons (Buck, Proc. Inst. C.E. cxliv. p. 70). Prof. Claxton Fidler, speaking of the arrangement adopted for putting initial stress on the top chord, stated that this bridge marked the furthest advance yet made in this type of construction. When such a rib is erected on centering without initial stress, the subsequent compression of the arch under its weight inflicts a bending stress and excess of compression in the upper member at the crown. But the bold expedients adopted by the engineer annulled the bending action.

The Garabit viaduct carries the railway near St Flour, in the Cantal department, France, at 420 ft. above low water. The deepest part of the valley is crossed by an arch of 541 ft. span, and 213 ft. rise. The bridge is similar to that at Oporto, also designed by Seyrig. It is formed by a crescent-shaped arch, continued on one side by four, on the other side by two lattice girder spans, on iron piers. The arch is formed by two lattice ribs hinged at the abutments. Its depth at the crown is 33 ft., and its centre line follows nearly the parabolic line of pressures. The two arch ribs are 65½ ft. apart at the springings and 20½ ft. at the crown. The roadway girders are lattice, 17 ft. deep, supported from the arch ribs at four points. The total length of the viaduct is 1715 ft. The lattice girders of the side spans were first rolled into place, so as to project some distance beyond the piers, and then the arch ribs were built out, being partly supported by wire-rope cables from the lattice girders above.

The total weight of ironwork was 3200 tons and the cost £124,000 (Annales des travaux publiques, 1884).

The Victoria Falls bridge over the Zambezi, designed by Sir Douglas Fox, and completed in 1905, is a combination of girder and arch having a total length of 650 ft. The centre arch is 500 ft. span, the rise of the crown 90 ft., and depth at crown 15 ft. The width between centres of ribs of main arch is 27½ ft. at crown and 53 ft. 9 in at springings. The curve of the main arch is a parabola. The bridge has a roadway of 30 ft. for two lines of rails. Each half arch was supported by cables till joined at the centre. An electric cableway of 900 ft. span capable of carrying 10 tons was used in erection.

12. (g) Movable Bridges can be closed to carry a road or railway or in some cases an aqueduct, but can be opened to give free passage to navigation. They are of several types: -

Fig. 33.  Moving bridges. Fig. 33.