Bent Glass

This was formerly used for show cases; its use in store fronts is becoming more and more familiar, large plates being bent for this purpose. It is much used in the construction of dwellings, in windows, or rounded corners, and in towers; in coach fronts and in rounded front china closets. Either plain glass or beveled glass may be bent, and to any curve.

The number of molds required in a glass-bending establishment is large.

The bending is done in a kiln. Glass melts at 2,300° F.; the heat employed in bending is 1,800° F. No pyrometer would stand long in that heat, so the heat of the kiln is judged from the color of the flame and other indications. Smaller pieces of glass are put into the molds in the kilns with forks made for the purpose. The great molds used for bending large sheets of glass are mounted on cars, that may be rolled in and out of kilns. The glass is laid upon the top of the mold or cavity, and is bent by its own weight. As it is softened by the heat it sinks into the mold and so is bent. It may take an hour or two to bend the glass, which is then left in the kiln from 24 to 36 hours to anneal and cool. Glass of any kind or size is put into the kilns in its finished state; the great heat to which it is subjected does not disturb the polished surface. Despite every precaution more or less glass is broken in bending. Bent glass costs about 50 per cent more than the flat.

The use of bent glass is increasing, and there are 4 or 5 glass-bending establishments in the United States, of which one is in the East.

Colored Glass

R. Zsigmondy has made some interesting experiments in coloring glass with metallic sulphides, such as molybdenite, and sulphides of antimony, copper, bismuth, and nickel. Tests made with batches of 20 to 40 pounds and with a heat not too great, give good results as follows:

Sand, 65 parts; potash, 15 parts; soda,

5 parts; lime, 9 parts; molybdenite, 3 parts; sulphide of sodium, 2 parts, gave a dark reddish-brown glass. In thinner layers this glass appeared light brownish yellow. Flashed with opal, it became a smutty black brown.

Sand, 50 parts; potash, 15 parts; soda, 5 parts; lime, 9 parts; molybdenite, 1 part; sulphide of sodium, 2 parts, gave a yellow glass.

Sand, 10 parts; potash, 3.3 parts; soda, 0.27 parts; lime, 1.64 parts; molybdenite, 0.03 parts, gave a reddish-yellow glass with a fine tinge of red.

Sand, 100 parts; potash, 26 parts; soda, 108 parts; lime, 12 parts; sulphide of copper, 1.7 parts; sulphide of sodium, 2.3 parts, gave a dark-brown color, varying from sepia to sienna. In thick layers it was no longer transparent, but still clear and unclouded. When heated this glass became smutty black brown and clouded.

A fine copper red was obtained from sand, 10 parts; potash, 3 parts; lime, 1.2 parts; soda, 0.25 parts; sulphide of copper, 7.5 parts; sulphide of sodium, 10.5 parts; borax, 9.5 parts.

Attempts to color with sulphides of antimony and bismuth failed. But the addition of 7 per cent of sulphide of nickel to an ordinary batch gave a glass of fine amethyst color.

Coloring Electric-Light Bulbs and Globes

Two substances suggest themselves as excellent vehicles of color, and both water soluble—water glass (potassium or sodium silicate) and gelatin. For tinting, water-soluble aniline colors should be tried. The thickness of the solution must be a matter of experimentation. Prior to dipping the globes they should be made as free as possible from all grease, dirt, etc. The gelatin solution should not be so thick that any appreciable layer of it will form on the surface of the glass, and to prevent cracking, some non-drying material should be added to it, say glycerine.

Rose-Tint Glass

Selenium is now used for coloring glass. Rose-tinted glass is made by adding selenium directly to the ingredients in the melting pot. By mixing first with cadmium sulphide, orange red is produced. This process is stated not to require the reheating of the glass and its immersion in the coloring mixture, as in the ordinary process of making red glass.