It was with a vehicle of the kind described in our last article that Messrs. De Dion and Bouton obtained a conspicuous success in 1894. In this competition they were the first to arrive at Mantes, doing the 36 miles in 3 hours, so that they made an average of 12 miles an hour; they were followed very closely by the Peugeot and Panhard-Levassor carriages. In spite of a series of difficult hills and bad roads, and an unintentional detour, they traversed the 48 miles between Mantes and Rouen in 4 hours 10 minutes. They recorded a speed of 15 miles an hour on some of the level roads, and on several occasions touched a maximum of 19 miles. The fact that they were able to ascend gradients of 1 in 10 at a speed of from 6 to 12 miles an hour sufficiently proved the efficiency of the machine.

The same constructors ran another vehicle in this competition of a somewhat similar design, but not adapted for a traction engine; this carried six passengers, and weighed about 3,000 lb. in working order. It was mounted on a rectangular and strongly braced frame, and was furnished with a boiler similar to that already described, but having only some 14 square feet of heating surface, a capacity of about 6 gallons of water, and 18 rows of tubes. The ratio of gearing was 4.06; the small cylinder was 3.54 in. in diameter and the low pressure cylinder 5.51 in., the stroke being 3.94 in. About the same time Messrs. De Dion and Bouton built for one of their clients a carriage in which the driving wheels were entirely independent, each of them being driven direct by a separate steam engine without any intermediate gear.

Fig 10, De Dion and Bouton Traction engine and omnibus Fig. 10.

The Count de Dion was one of the most enthusiastic organizers of the Paris to Bordeaux competition in 1895, and naturally his firm took part in the trials. They entered three vehicles for competition; one of these, called No. 1, was the traction engine which had taken part in the 1894 trials, and which we have already described. For the second time this machine gave very excellent results, as it made the distance from Paris to Angoulème (280 miles) in 30 hours, but on account of various mishaps it had to run very slowly from Angoulème to Bordeaux (84 miles), taking, in fact, 31 hours for this part of the journey, and not arriving until long after it had been ruled out of the competition.

Their second vehicle, No. 2, was a four seated brake which was, in fact, a modified traction engine. The boiler, which was of the De Dion and Bouton type, had a heating surface of 36 square feet, and was registered at 200 lb. per square inch; it weighed 550 lb. As to the motor, it was a Woolfe engine, the moving parts of which were carefully counterbalanced. The cranks were set at an angle of 180°; the diameter of the high pressure cylinder was 2.95 in., and that of the low pressure 5.90 in.; the low pressure cylinder was steam jacketed. This motor, which weighed 330 lb., developed 11 horse power at a speed of 800 revolutions. The engine was coupled direct to the shaft of the differential motion, on which were mounted two pinions for changing the speed, and which could be moved to and fro on the shaft; the movement of the differential gear was transmitted to the wheels by articulated shafts, such as those we have already referred to in describing the traction engine; sufficient water and coke could be carried for a run of 45 miles, and on a good road a speed of more than 25 miles an hour was obtained.

Fig 11. De Dion and Bouton Traction engine and omnibus Fig. 11.

Messrs. De Dion and Bouton anticipated great things from this carriage, and for the long run from Paris to Bordeaux they had provided only three changes of drivers, in order that the machine might be in as few hands as possible. Their hopes, however, were not realized, for although it made a better start than any of the other competitors, it only succeeded in running for 125 miles; after having passed Blois the transmission shaft broke, and the brake was useless for the time being, but the machine did enough to satisfy the constructors of the soundness of their idea; it ran the 34.5 miles between Versailles and Etampes in 2 hours and 16 minutes, making an average speed of 15 miles an hour over difficult country; between Versailles and Blois the speed touched nearly 18 miles.

The vehicle No. 3 was a tricycle driven by a petroleum motor; this was not seriously entered for competition, but rather to show a first effort of a new departure which the constructors have since followed with some success. At the present time Messrs. De Dion and Bouton are making preparations to take part in the competition which is to be arranged for the autumn of the present year. They have a traction engine with considerable modifications in its design, with which they, expect to run from Paris and Marseilles, and they have the intention of hauling with it one of the 40-seat omnibuses of the Paris Company, which is usually drawn by three horses. Fig. 10 is a general view of the engine attached to the omnibus. This type of vehicle is furnished with a compound engine, which can be worked up to 30 horse power, and which is to be capable of hauling a load of 5 tons at a speed of 12.5 miles; the principal points of difference between this machine and the other, which we have already described, lie in the great care which has been bestowed on the details, the precautions taken to secure the moving parts from dust, and the oil bath in which the engine works.

The water supply carried is sufficient for a run of 25 miles over an average road with a load of 3 tons; the manufacturers state that the cost of hauling this load amounts to 1d. per kilometer.

Great care has been taken as to the quality of the steel employed in the frame and other parts of the machine. By reference to Fig. 10 it will be seen that the boiler (2) is surrounded by the fuel tank, while the water reservoir forms a seat; the motor (1) is placed beneath the platform as usual. The driver has all the controlling levers conveniently at hand; the starting lever is shown at 9, while at 5 is a small wheel controlling the steam admission; the reversing gear is actuated by the lever, 7. The vehicle is steered by means of a turning bar, similar to those of hand brakes on some wagons; the feed pump is started and stopped by a small wheel marked 10, while 8 and 11 are the hand and steam brakes respectively.

We referred just now to the tricycle made by Messrs. De Dion and Bouton, and shown by them at the competition of 1895, although it was not entered for the race. Since that time they have made two types of this class of vehicle, of which we give engravings in Figs. 12 and 13. In the former the motor is attached to the back of the frame by a suspended connection. It will be seen that the frame is not a little complex, and necessarily so, in order that it may carry the different parts of the mechanism. The motor has a single cylinder and is quite inclosed in a casing that is kept filled with oil; the moving parts of the engine are within this casing; the main shaft drives, by means of a pinion, the differential gear that is mounted on the axle. It will be seen from the illustration that the builders do not rely wholly on the motor, but have provided the usual cycle pitched chain so that, in the event of a breakdown, the rider can propel his machine with the pedals. Indeed, this is always necessary in starting, though a few strokes with the pedals suffice, and as soon as the engine is started the pedal clutch is thrown out of gear. In mounting a steep gradient the pedals are also useful as an auxiliary to the motor.

The mechanical power provided is sufficient to drive the machine on a good and level road at the rate of 20 kilometers an hour. It can also travel up grades of 1 in 20 or 25; the weight of the machine in working order is only 100 lb.

On referring to the engraving there will be seen attached to the frame beneath the saddle a rectangular reservoir that contains the gasoline, the capacity being sufficient for a six hours' run. To the reservoir is attached the carburetor, which is connected to the motor by a pipe. The explosive mixture in the cylinder is fired electrically, and for this purpose a compact and reliable battery is hung to the forward part of the frame almost beneath the steering bar. This battery will give 100 hours of work without recharging; it supplies current to a Ruhmkorff coil placed beneath the rear bar of the frame in a metal case that can be seen in the engraving; the other cylinder near it is a pressure reducer into which the gases from the cylinder are exhausted before they pass into the air. The second type of tricycle, illustrated by Fig. 13, is an improvement on the first. It will be seen that the frame is much simpler; the total weight is reduced; the gasoline reservoir is triangular, in order to economize space.

The motor employed is very ingenious, and appears to be efficient; we have seen it in operation at the works of MM. De Dion and Bouton. It can be run easily at a speed of 2,500 revolutions, although in practice the rate is limited to 700 revolutions, in order to reduce the wear of the moving parts. In this, as in the earlier type, the use of water for cooling the cylinder is avoided, the outside of the latter being made with a number of wings that are intended to keep the cylinder cool by contact with the air. The method of igniting the gases has also been changed, in so far as the arrangement of the battery is concerned. The four cells used for this purpose are carried in a leather case hung to one of the frames of the machine. An interesting detail is that the exact moment for producing the spark is regulated by the motor itself, and the Ruhmkorff coil is suppressed. The contact breaker has been placed on the motor, and a cylindrical cam is mounted on the shaft that controls the exhaust valve. In this cam there is formed a recess into which the blade of the contact breaker, which is fixed on an insulated mount, falls at the proper instant; at the same moment the spark is produced, the blade being raised as it leaves the recess in the cam.

It is, of course, necessary to regulate exactly the relative positions of the blade and the cam, so that the spark may take place when the mixture has to be exploded. The frame of the motor is of aluminum, by which considerable saving in weight is effected; as in the earlier model, the moving parts of the motor are immersed in an oil bath. The pedals are employed to start, or as an auxiliary, or in the event of a breakdown. When not required for propulsion, they are thrown out of gear, when they serve as foot rests, and also as a means for actuating an emergency brake. The carburetor is no longer attached to the gasoline reservoir, but is separate; the explosions in the cylinder are regulated by a lever close to the steering bar.

The greatest credit must be accorded to MM. De Dion and Bouton for the perseverance and ingenuity they have shown in the design and construction of the types of power vehicle they have made their own. As to their larger carriages, experience has proved their practical value; they have expended even more trouble on their power cycles, but it appears to us that ingenuity and skill are largely wasted in this direction, since the raison d'etre of the cycle in all its forms lies in the fact that it should give perfect freedom to the rider and leave him dependent for his progress upon his own efforts. - Engineering.