This section is from the "Version Control with Subversion" book, by Ben Collins-Sussman, Brian W. Fitzpatrick and C. Michael Pilato. Also available from Amazon: Version Control with Subversion.
Just like the svn update command, svn merge applies changes to your working copy. And therefore it's also capable of creating conflicts. The conflicts produced by svn merge, however, are sometimes different, and this section explains those differences.
To begin with, assume that your working copy has no local edits. When you svn update to a particular revision, the changes sent by the server will always apply “cleanly” to your working copy. The server produces the delta by comparing two trees: a virtual snapshot of your working copy, and the revision tree you're interested in. Because the left-hand side of the comparison is exactly equal to what you already have, the delta is guaranteed to correctly convert your working copy into the right-hand tree.
But svn merge has no such guarantees and can be much more chaotic: the advanced user can ask the server to compare any two trees at all, even ones that are unrelated to the working copy! This means there's large potential for human error. Users will sometimes compare the wrong two trees, creating a delta that doesn't apply cleanly. svn merge will do its best to apply as much of the delta as possible, but some parts may be impossible. Just as the Unix patch command sometimes complains about “failed hunks,” svn merge will similarly complain about “skipped targets”:
$ svn merge -r 1288:1351 http://svn.example.com/repos/branch U foo.c U bar.c Skipped missing target: 'baz.c' U glub.c U sputter.h Conflict discovered in 'glorb.h'. Select: (p)ostpone, (d)iff, (e)dit, (h)elp for more options :
In the previous example it might be the case that
baz.c
exists in both snapshots of the
branch being compared, and the resulting delta wants to
change the file's contents, but the file doesn't exist in
the working copy. Whatever the case, the
“skipped” message means that the user is most
likely comparing the wrong two trees; they're the classic
sign of user error. When this happens, it's easy to
recursively revert all the changes created by the merge
(svn revert --recursive), delete any
unversioned files or directories left behind after the
revert, and rerun svn merge with
different arguments.
Also notice that the previous example shows a conflict
happening on glorb.h
. We already
stated that the working copy has no local edits: how can a
conflict possibly happen? Again, because the user can use
svn merge to define and apply any old
delta to the working copy, that delta may contain textual
changes that don't cleanly apply to a working file, even if
the file has no local modifications.
Another small difference between svn
update and svn merge are the
names of the full-text files created when a conflict
happens. In the section called “Resolve Conflicts (Merging Others' Changes)”, we saw
that an update produces files named
filename.mine
,
filename.rOLDREV
, and
filename.rNEWREV
. When svn
merge produces a conflict, though, it creates
three files named filename.working
,
filename.left
, and
filename.right
. In this case, the
terms “left” and “right” are
describing which side of the double-tree comparison the file
came from. In any case, these differing names will help you
distinguish between conflicts that happened as a result of an
update versus ones that happened as a result of a
merge.