What is it? Why, it is dynamic caloric. Now let us take this oxide of zinc (ZnO) and place it with charcoal in a reducing apparatus which stands on an insulated table; the apparatus is then heated, the carbon vaporizes, and this vapor of carbon (C) robs the oxide of zinc (ZnO) of its oxygen, leaving metallic zinc (Zn) and carbonic oxide (CO). Now, for every pound of zinc so formed 1,301 units C. of static caloric are transferred from the charcoal to the zinc and occluded in it. Hence we find that the 1,301 units C. of caloric which we took out of the zinc, and which we call electricity, is nothing else but the 1,301 units of static caloric which was contained in the charcoal and from it set free by oxidation and transferred to the zinc in the smelting process. Let us follow this matter a little further. Charcoal is made by burning wood under such conditions as eliminate the water and hydrogen and leave the carbon as a residuum which we call charcoal. Thus we find that the caloric contained in the charcoal, transferred from the charcoal to the zinc, and from it developed into what we call electricity, was previously embodied in the wood; and if we study the laws of vegetation, we find that the atmosphere being charged with carbonic acid (CO), the leaves of plants, shrubs, and trees, breathing, take in the CO, the sun rays decompose the CO, set free the oxygen, and supply the necessary amount of caloric for the condensed state of the carbon. Thus we find that the force which we term electricity, developed from the oxidation of zinc, or any other matter, by oxidation, primarily comes from the sun rays.

Coal is generally supposed to be of vegetable origin, and the caloric occluded in it is derived from the same source as that embodied in charcoal. Now when we burn coal under a steam boiler, the carbon and hydrogen are oxidized, and the static caloric set free. A portion of this caloric passes through the shell or tubes of the boilers, and increases the molecular velocity of the water; increased activity of the molecules tends to separate them to a greater distance from each other. When the molecular velocity of the water acquires the degree indicated by a temperature of 212 degrees F., the water passes from the fluid to the gaseous state, and in doing so expands to 1,696 times its bulk. Now if the steam so developed be confined under a pressure of 105 pounds to the square inch, the water will not vaporize until a molecular velocity is attained indicated by a temperature of 312° F. (Spons' "Engineering," D2, page 418), and then the expansion is only 253 times its bulk. By using this steam, in a steam engine, the caloric in the steam tends to push the molecules of which it is composed into an ultimate expansion of 1,696 times the bulk of the water from which it was generated, and this force acts upon the piston and does the work. Thus we see that the steam engine is driven by the same force which produces the phenomena accredited to electricity.

I have already shown that in what we term combustion not a particle of the ponderable matter is annihilated. Combustion is but a phenomenon resulting from a rearrangement of the particles, and so it is with the imponderable physical force caloric; it is not consumed when light and heat are produced, nor converted into power, as we are sometimes told. But whatever the phenomena produced, the aggregate amount of static and dynamic caloric is always and ever the same.

If we consider the Ritter-Plant-Faure-Battery, which is mentioned as storing electricity, we find that the phenomena exhibited by the use of this apparatus are produced by the same factor. The battery is composed of two sheets of lead, which are covered with a layer of minium (PbO). The sheets are laid one upon the other with an intervening layer of felt. The pack is then rolled up in a spiral form and placed in a vessel containing acidulated water. One of the plates is connected with the positive, and the other plate with the negative pole of a battery or generator.

When the current of electricity enters the battery, the PbO on the positive plate is reduced to Pb, and the oxygen so set free attacks the PbO on the negative plate, and oxidizes it to PbO. In this chemical action, caloric is occluded in the Pb and unlocked in the PbO, but a much greater amount of caloric is locked up than is unlocked, although the amount of oxygen used in both cases is precisely the same, which has been fully explained in the oxidation of carbon.

Now after the battery has been thus charged and the wires disengaged, the chemical action ceases for want of the reducing agent (dynamic caloric), and the apparatus may be held at rest, or transported to any distance required. When it is desired to utilize the force thus stored, the poles are changed by grounding the positive wire, and attaching the other to the conduit through which the electricity is to flow. The chemical action is thus reversed, and the PbO is reduced to PbO, the oxygen thus set free attacks the Pb on the other plate, oxidizing it to PbO, thus unlocking all the caloric which was occluded by the first action. In a battery of this kind weighing 75 pounds, we are informed by Sir William Thomson, that one million foot pounds of force may be stored, and again set free for use.

Thus we find that the principle upon which the Faure battery is formed is not new, and the prime factor producing the phenomena is the same as has been shown to have caused all other phenomena referred to, and indeed the principle is the same as now employed by the author in the basic dephosphorizing process, i.e., caloric is occluded in phosphorus by smelting in a blast furnace, and unlocked in the converter, for the purpose of securing the fluidity of the metal during treatment. The difference being, that one is done by non-luminous, while the other is by luminous combustion.

If we consider the phenomenon of light, we find that it is due to the same force. As before stated, when we oxidize carbon, or hydrogen, as in the rapid combustion of wood, oil, or coal, the escaping caloric flies off with such great speed as to cause the molecules in the circumambient medium to assume a velocity which exhibits luminosity. Thus the light produced by burning candles, oil, gas, wood, and coal, is caused by the same prime factor, dynamic caloric.

The force of caloric is imponderable and invisible, and is only known by its effects. We do know that it is occluded in metals and other material, because we can unlock it and set it free, or we can transfer it from one body to another, and by measuring its effects, we can determine its quantity. We know that it prefers to travel over one vehicle more than another, and by this knowledge we are able to insulate it, and thus conduct it in any direction desired. The materials through which it passes with the greatest freedom are called conductors, and the materials which most retard its passage, non-conductors; but these terms must be taken in a comparative sense only, as in fact there are no absolute non-conductors of dynamic caloric, or of what we call electricity.

The dynamo-electric generator simply draws the dynamic caloric from the air or earth, or both, and confines it in an insulated path. Now if that path be a No. 10 wire, the conduit may be sufficient to permit the caloric to pass without increasing the molecular velocity of the metal to an appreciable degree, but if we cut the No. 10 wire and insert a piece of No. 40 platinum wire in the path, the amount of caloric flowing through the No. 10 wire cannot pass through the No. 40 wire, and the resistance so caused increases the molecular velocity of the No. 40 wire to such degree as to exhibit the phenomenon of incandescence, and this is the incandescent electric light. And if we consider the carbon light, we find that the current of caloric, in passing from one pencil to the other, produces a molecular velocity of luminosity in the adjoining atmosphere, and in addition a portion of the carbon is consumed, which sets free an additional amount of caloric, at a very high velocity, hence the intensity of the carbon electric light is largely due to the dynamic caloric unlocked from the pencils, and thus we find that the electric light produced by either method is due to the action of dynamic caloric.

Taking this theory based upon physical science, and the facts which we know pertaining to electricity, I conceive that caloric exists in two conditions. Static caloric is what we call latent heat, and dynamic caloric is what we call electricity. Therefore what may we expect of it (electricity) is merely a matter of economy in the development and utilization of dynamic caloric; in other words, can we unlock static caloric by non-luminous combustion, and thus develop dynamic caloric as a first power more economically per foot pound than we now do or can hereafter do by luminous combustion? Second, can we utilize water and wind for the production of dynamic caloric as a first power? Third, can we utilize the differential tension of dynamic caloric in the earth and the atmosphere as a first power? Fourth, will it pay to use luminous combustion as a first power to generate dynamic caloric as a second power?