The Best Chemicals for this Work are the recrystallized red prussiate of potash and the citrate of iron and ammonia, which is manufactured by Powers & Wightman, of Philadelphia. If the red prussiate has not been recrystallized, the whites will be unsatisfactory and the samples of citrates of iron and ammonia which have come to us from other chemists than those named, have all proved unreliable for this process.

The Sensitizing Liquid

Its Proportions

The blue process was originally introduced from France, by the late Mr. A. L. Holley. I was indebted to Mr. P. Barnes, who was with Mr. Holley at the time, for an early account of it, and I had the first blue process machine that was in use in New England. Since 1876, instruction in the use of the blue process has been given to the students of mechanical engineering of the Massachusetts Institute of Technology, and they have caused its introduction into many draughting offices. The proportions of the sensitizing liquid, as originally given me by Mr Barnes, were as follows:

Red prussiate of potash8 parts.
Citrate of iron and ammonia 8 parts.
Gum arabic1 part.
Water80 parts.

Results Of Experiments

In our use, it first appeared that the gum might be omitted from the preparation when sufficiently hard papers were used. Next, that a preparation containing

Red prussiate of potash2parts.
Citrate of iron and ammonia 3"

printed more rapidly. This preparation I continue to use when much time may elapse between sensitizing and printing; but, when the paper is to be printed immediately after sensitizing, I use a larger proportion of citrate of iron and ammonia. Before arriving at the conclusion that these proportions were the best to be used, I made a series of purely empirical experiments, beginning with the proportions:

Red prussiate of potash10 parts.
Citrate of iron and ammonia 1 part.
Water50 parts.

and ending with the proportions:

Red prussiate of potash1part.
Citrate of iron and ammonia 10parts.

I found the best plan for conducting these experiments to be: To coat a sheet of the paper with a given mixture; to cut the sheet into strips before exposure; to expose all the strips of the sheet, at the same time, to the direct sunlight without an intervening negative; and to withdraw them, one after another, at stated intervals. I found that with each mixture there was a time of exposure which would produce the deepest blue, that with over-exposure the blue gradually turned gray, and that if a curve should be plotted, the abscissas of which should represent the time of exposure, and the ordinates of which should represent the intensity of the blue the curves drawn would have approximately an elliptical form, so that if one knew the exact time of exposure which would give the best result with any mixture, one might deviate two or three minutes either way from that time without producing a noticeable result. I have found that, with the same paper, the same blue results with any good proportions of the chemicals named, provided a sufficient weight of both chemicals is applied to the surface; that an excess of the red prussiate of potash renders the preparation less sensitive to light, and very much lengthens the necessary time of exposure; that the prints are finer with some excess of the red prussiate; that an excess of the citrate of iron and ammonia hastens the time of printing materially; that a greater excess of the citrate causes the whites to become badly stained by the iron, while a still greater excess of the citrate, in a concentrated solution causes the sensitized paper to change without exposure to light, and to produce a redder blue or purple, which does not adhere to the paper, but may be washed off with a sponge.

I have found that the cheapest method of reproducing inked drawings that have been made on thick paper is not to trace them, but to print the blues from a photographic glass negative; and also, that the dry plate process is well adapted to such work in offices, when one has become sufficiently experienced. Printed matter can also most easily and inexpensively be reproduced by the same means, when a small issue is required on each successive year. For the reproduction of manuscript by the blue process, the best plan that I have found has been to write the manuscript upon the thinnest blue tinted French note-paper, with black opaque ink - the stylographic ink is very good - and, afterward, to dip the paper into melted paraffine, and to dry the paper at the melting temperature. This operation, if cheaply done, requires special apparatus. For positive printing from the glass negative, I use a multiple frame, by the aid of which I can print from 16 negatives at the same time, upon a single sheet of paper. This frame is interchangeable with the one that contains the plate glass. The negatives are so arranged in the frame that the sheets can be cut and bound, as in the ordinary process of book binding.

The time required for exposure, when printing from glass negatives, varies with the negative; and, in order to secure satisfactory results with the multiple frame it is necessary to stop the exposure of some, while the exposure of others is continued. I insert wooden or cloth stoppers into the frame for the purpose of stopping the exposure of certain negatives. When paraffined manuscript is to be printed from, I find it convenient to have it written on sheets of small size, and to have these mounted upon an opaque frame of brown Manila paper, printing sixteen or more at a time, depending upon the size of the printing frame. Many small tracings may be similarly mounted upon a brown paper multiple frame, and may be printed together upon a single sheet.


Read June 21, 1882, before the Boston Society of Civil Engineers.


Since this paper was read, I have seen in the office of the City Engineer of Boston a drying case which is similar in some respects to the one that I have devised. It has been longer in use than my own. The drawers are simply the ordinary mosquito netting frames covered with cotton netting. They have no fronts, but a door covers the front of the case, and shuts out the light.