By Channing Whitaker

The blue process is well known to the members of the society, and I need not take time to describe it; but with the ordinary blue process printing frame the results are sometimes unsatisfactory, and now that the process has come to be so commonly used I have thought that an account of an inexpensive but efficient printing frame would be of interest. The essential parts of the apparatus are its frame, its glass, its pad or cushion, its clamps, and the mechanism by which the surface of the glass can easily be made to take a position that is square with the direction of the sun's rays.

The Blue Process Printing Frame In Common Use

Its Defects

The pad of the apparatus in common use consists of several thicknesses of blanketing stretched upon a back board. The sensitized paper and the negative are placed between the pad and the plate glass, and the whole is squeezed together by pressure applied at the periphery of the glass and of the back-board. Both the glass and the back-board spring under the pressure, and it results that the sensitized paper is not so severely pressed against the negative near the center of the glass as it is near the edges. If at any point the sensitized paper is not pressed hard up against the negative, a bluish tinge will appear where a white line or surface was expected. With an efficient printing frame and suitable negatives, these blue lines will never appear, and it was to prevent the production of defective work that I undertook to improve the pad of the printing frame.

The Printing Frame Used In Ordinary Photography

Very naturally, I first examined the printing frame used in ordinary photography. This frame is extremely simple, and is very well adapted to its use. It is, undoubtedly, the best frame for blue process printing, when the area of the glass is not too large. The glass is set in an ordinary wooden frame, while the back-board is stiff and divided into two parts. A flat, bow-shaped spring is attached by a pivot to the center of each half of the back-board. The two halves of the back-board are hinged together by ordinary butts. Four lugs are fastened to the back of the frame, and, when the back-board is placed in position, the springs may be swung around, parallel to the line of the hinges, and pressed under the lugs, so that the back of the back-board is pressed most severely at the center of each half, while the glass is prevented from springing away from the back-board by the resistance of the frame at its edges. Unless the frame is remarkably stiff, it will resist the springing of the glass more perfectly in the neighborhood of the lugs than elsewhere.

It will now be seen that, on account of the manner in which the pressure is applied, the back-board tends to become convex toward the glass, while the adjacent surface of the glass tends to become concave toward the back-board; and that with such a frame, the pressure upon all parts of the sensitized paper is more nearly uniform than when the pressure is applied in the manner before described. With a small frame of this description, a piece of ordinary cotton flannel is used between the back-board and the sensitized paper, and, with larger sizes, one or more thicknesses of elastic woolen blanket are substituted for the cotton flannel. There is an advantage in having a hinged back-board like that which has been described, because, when the operator thinks that the exposure to sunlight has been sufficiently prolonged, he can turn down either half of the back and examine the sensitized paper, to see if the process has been carried far enough. If it has not, the back-board can be replaced, and the exposure continued, without any displacement of the sensitized paper with respect to the negative.

This is an important advantage.

An Efficient Blue Process Frame, for Printing from Large Negatives, or for Printing Simultaneously from many Small Ones. - In order to be efficient, such a frame must be capable of keeping the sensitized paper everywhere tightly pressed against the negative. Again, such a frame, being large, is necessarily somewhat heavy. It should be so mounted that it can be handled with ease; and, in order that it may print quickly, it should be so arranged that it can be turned without delay, at any time, into a position that is square with the direction of the sun's rays.

Undoubtedly, if a sufficiently thick plate of glass should be used, the ordinary photographic printing frames would answer the purpose, whatever the size, but very thick plate glass is both heavy and expensive. Commercial plate glass varies in thickness from one-fourth to three eighths of an inch, and the thicker plates are rather rare. A large plate of it is easily broken by a slight uniformly distributed pressure. But the pressure that is required for the blue process printing, although slight, is much greater than is used in the ordinary photographic process. For the sensitized paper that is used in the blue process printing is, comparatively, very thick and stiff, and it may cockle more or less, while the paper that is used in ordinary photography is thin and does not cockle. Now, it is easy to see that a pressure severe enough to flatten all cockles must be had at every part of the sensitized paper, and that, if the comparatively thin, inexpensive, light weight, commercial plate glass is to be used, it is desirable to have the pressure nowhere much greater than is needed for that purpose, lest the fragile glass should be fractured by it.

In each of my large frames I use the commercial plate glass; instead of the cushion of cotton flannel, or of flannel, I use a cushion filled with air of sufficiently high pressure to flatten all cockles, and to press all parts of the sensitized paper closely against the negative; and instead of the hinged back-board I use a back-board made in one piece and clamped to the frame of the glass at its edges. Connected with the cushion is a pressure gauge, and a tube with a cock, for charging the cushion with air from the lungs. Experience shows what pressure is necessary with any given paper, and the gauge enables one to know that the pressure is neither deficient nor in excess of that which is safe for the glass.