The waves of sound select the strings which respectively respond to them - the strings, that is to say, whose rates of vibration are the same as their own - and of the general series of strings these only sound. The vibratory motion of the voice, imparted first to the air, is here taken up by the strings. It may be regarded as absorbed, each string constituting itself thereby a new center of motion. Thus also, as regards the tightly locked atoms of molecules on which waves of light or radiant heat impinge. Like the waves of sound just adverted to, the waves of ether select those atoms whose periods of vibration synchronize with their own periods of recurrence, and to such atoms deliver up their motion. It is thus that light and radiant heat are absorbed.

And here the statement, though elementary, must not be omitted, that the colors of the prismatic spectrum, which are presented in an impure form in the rainbow, are due to different rates of atomic vibration in their source, the sun. From the extreme red to the extreme violet, between which are embraced all colors visible to the human eye, the rapidity of vibration steadily increases, the length of the waves of ether produced by these vibrations diminishing in the same proportion. I say "visible to the human eye," because there may be eyes capable of receiving visual impression from waves which do not affect ours. There is a vast store of rays, or more correctly waves, beyond the red, and also beyond the violet, which are incompetent to excite our vision; so that could the whole length of the spectrum, visible and invisible, be seen by the same eye, its length would be vastly augmented.

I have spoken of molecules being wrecked by a moderate amount of heat of the proper quality: let us examine this point for a moment. There is a liquid called nitrite of amyl - frequently administered to patients suffering from heart disease. The liquid is volatile, and its vapor is usually inhaled by the patient. Let a quantity of this vapor be introduced into a wide glass tube, and let a concentrated beam of solar light be sent through the tube along its axis. Prior to the entry of the beam, the vapor is as invisible as the purest air. When the light enters, a bright cloud is immediately precipitated on the beam. This is entirely due to the waves of light, which wreck the nitrite of amyl molecules, the products of decomposition forming innumerable liquid particles which constitute the cloud. Many other gases and vapors are acted upon in a similar manner. Now the waves that produce this decomposition are by no means the most powerful of those emitted by the sun. It is, for example, possible to gather up the ultra-red waves into a concentrated beam, and to send it through the vapor, like the beam of light. But, though possessing vastly greater energy than the light waves, they fail to produce decomposition.

Hence the justification of the statement already made, that a suitable relation must subsist between the molecules and the waves of ether to render the latter effectual.

A very impressive illustration of the decomposing power of the waves of light is here purposely chosen; but the processes of photography illustrate the same principle. The photographer, without fear, illuminates his developing room with light transmitted through red or yellow glass; but he dares not use blue glass, for blue light would decompose his chemicals. And yet the waves of red light, measured by the amount of energy which they carry, are immensely more powerful than the waves of blue. The blue rays are usually called chemical rays - a misleading term; for, as Draper and others have taught us, the rays that produce the grandest chemical effects in nature, by decomposing the carbonic acid and water which form the nutriment of plants, are not the blue ones. In regard, however, to the salts of silver, and many other compounds, the blue rays are the most effectual. How is it then that weak waves can produce effects which strong waves are incompetent to produce? This is a feature characteristic of periodic motion. In the experiment of singing into an open piano already referred to, it is the accord subsisting between the vibrations of the voice and those of the string that causes the latter to sound.

Were this accord absent, the intensity of the voice might be quintupled, without producing any response. But when voice and string are identical in pitch, the successive impulses add themselves together, and this addition renders them, in the aggregate, powerful, though individually they may be weak. It some such fashion the periodic strokes of the smaller ether waves accumulate, till the atoms on which their timed impulses impinge are jerked asunder, and what we call chemical decomposition ensues.

Savart was the first to show the influence of musical sounds upon liquid jets, and I have now to describe an experiment belonging to this class, which bears upon the present question. From a screw-tap in my little Alpine kitchen I permitted, an hour ago, a vein of water to descend into a trough, so arranging the flow that the jet was steady and continuous from top to bottom. A slight diminution of the orifice caused the continuous portion of the vein to shorten, the part further down resolving itself into drops. In my experiment, however, the vein, before it broke, was intersected by the bottom of the trough. Shouting near the descending jet produced no sensible effect upon it. The higher notes of the voice, however powerful, were also ineffectual. But when the voice was lowered to about 130 vibrations a second, the feeblest utterance of this note sufficed to shorten, by one half, the continuous portion of the jet. The responsive drops ran along the vein, pattered against the trough, and scattered a copious spray round their place of impact. When the note ceased, the continuity and steadiness of the vein were immediately restored.

The formation of the drops was here periodic; and when the vibrations of the note accurately synchronized with the periods of the drops, the waves of sound aided what Plateau has proved to be the natural tendency of the liquid cylinder to resolve itself into spherules, and virtually decomposed the vein.