Rogers estimates that a scale 1-16th of an inch thick will require the extra expenditure of 15 per cent. more fuel, and this ratio increases as the scale grows thicker. Thus, when it is one-quarter of an inch thick, 60 per cent. more fuel is needed; one-half inch, 112 per cent. more fuel, and so on.

Rogers very forcibly shows the evil consequences to the boiler from the excessive heating required to raise steam in a badly incrusted boiler, by the following illustration: To raise steam to a pressure of 90 pounds the water must be heated to about 320° Fahr. In a clean boiler of one-quarter inch iron this may be done by heating the external surface of the shell to about 325° Fahr. If, now, one-half an inch of scale intervenes between the boiler shell and the water, such is its quality of resisting the passage of heat that it will be necessary to heat the fire surface to about 700°, almost to a low red heat, to effect the same result. Now, the higher the temperature at which iron is kept the more rapidly it oxidizes, and at any heat above 600° it very soon becomes granular and brittle, and is liable to bulge, crack, or otherwise give way to the internal pressure. This condition predisposes the boiler to explosion and makes expensive repairs necessary. The presence of such scale, also, renders more difficult the raising, maintaining, and lowering of steam.

The nature of incrustation and the evils resulting therefrom having been stated, it now remains to consider the methods that have been devised to overcome them. These methods naturally resolve themselves into two kinds, chemical and mechanical. The chemical method has two modifications; in one the design is to purify the water in large tanks or reservoirs, by the addition of certain substances which shall precipitate all the scale-forming ingredients before the water is fed into the boiler; in the other the chemical agent is fed into the boiler from time to time, and the object is to effect the precipitation of the saline matter in such a manner that it will not form solid masses of adherent scale. Where chemical methods of purification are resorted to, the latter plan is generally followed as being the least troublesome. Of the many substances used for this purpose, however, some are measurably successful; the majority of them are unsatisfactory or objectionable.

The mechanical methods are also very various. Picking, scraping, cleaning, etc., are very generally resorted to, but the scale is so tenacious that this only partially succeeds, and, as it necessitates stoppage of work, it is wasteful. In addition to this plan, a great variety of mechanical contrivances for heating and purifying the feed-water, by separating and intercepting the saline matter on its passage through the apparatus, have been devised. Many of these are of great utility and have come into very general use. In the Western States especially, where the water in most localities is heavily charged with lime, these mechanical purifiers have become quite indispensable wherever steam users are alive to the necessity of generating steam with economy.

Most of these appliances, however, only partly fulfill their intended purposes. They consist essentially of a chamber through which the feed-water is passed, and in which it is heated almost to the boiling point by exhaust steam from the engine. According to the temperature to which the water is heated in this chamber, and the length of time required for its passage through the chamber, the carbonates are more or less completely precipitated, as likewise the matter held in mechanical suspension. The precipitated matter subsides on shelves or elsewhere in the chamber, from which it is removed from time to time. The sulphate of lime, however, and the other soluble salts, and in some cases also a portion of the carbonates that were not precipitated during the brief time of passage through the heater, are passed on into the boiler.

Appreciating this insufficiency of existing feed-water purifiers to effectually remove these dangerous saline impurities, the writer in designing the feed-water heater now to be described paid special attention to the separation of all matters, soluble and insoluble; and he has succeeded in passing the water to the boilers quite free from any substance which would cause scaling or coherent deposit. His attention was called more particularly to the necessity of extreme care in this respect, through the great annoyance suffered by steam users in the Central and Western States, where the water is heavily charged with lime. Very simple and even primitive boilers are here used; the most necessary consideration being handiness in cleaning, and not the highest evaporative efficiency. These boilers are therefore very wasteful, only evaporating, when covered with lime scale, from two to three pounds of water with one pound of the best coal, and requiring cleansing once a week at the very least. The writer's interest being aroused, he determined, if possible, to remedy these inconveniences, and accordingly he made a careful study of the subject, and examined all the heaters then in the market.

He found them all, without exception, insufficient to free the feed-water from the most dangerous of impurities, namely, the sulphate and the carbonate of lime.

Taking the foregoing facts, well known to chemists and engineers, as the basis of his operations, the writer perceived that all substances likely to give trouble by deposition would be precipitated at a temperature of about 250° F.

His plan was, therefore, to make a feed-water heater in which the water could be raised to that temperature before entering the boiler. Now, by using the heat from the exhaust steam the water may be raised to between 208° and 212° F. It has yet to be raised to 250° F.; and for this purpose the writer saw at once the advantage that would be attained by using a coil of live steam from the boiler. This device does not cause any loss of steam, except the small loss due to radiation, since the water in any case would have to be heated up to the temperature of the steam on entering the boiler. By adopting this method, the chemical precipitation, which would otherwise occur in the boiler, takes place in the heater; and it is only necessary now to provide a filter, which shall prevent anything passing that can possibly cause scale.