[Footnote: Read at Buffalo meeting of the American Water-Works Association May 15,1883.]

By B. F. JONES, Kansas City.

What I have to say in relation to elevators and motors will be mostly in regard to questions that their uses necessarily bring up for settlement at the water-works office; also to show how I have been able in a measure to overcome some of the many difficulties that have presented themselves, as well as to discuss and seek information as to the best way of meeting others that still have to be dealt with. At the outset, therefore, let me state that I am not an hydraulic engineer, nor have I sufficient mechanical knowledge to undertake the discussion of the construction or relative merits of either elevators or motors. This I would respectfully suggest as a very proper and interesting topic for a paper at some future meeting by some one of the many, eminent engineers of this association.

The water-works of Kansas City is comparatively young, and my experience only dates back six or seven years, or shortly after its completion. At this time it was deemed advisable on account of the probable large revenue to be derived from their use, to encourage the putting in of hydraulic elevators by low water rates. With this end in view a number of contracts were made for their supply at low special rates for a period of years, and our minimum meter rate was charged in all other cases, regardless of the quantity of water consumed. In most instances these special rates have since been found much too low, parties paying in this way being exceedingly extravagant in the use of elevators. However, the object sought was obtained, and now they are very extensively used. In fact, so much has their use increased, that the question is no longer how to encourage their more general adoption, but how to properly govern those that must be supplied. A present our works furnish power to about 15 passenger and 80 freight elevators, and the number is rapidly increasing.

Before going into details it seems proper to give at least a brief description of our water-works, as my observations are to a great extent local.

On account of the peculiar topography of Kansas City (and I believe it has more topography to the square foot than any city in the country) two systems of water supply have been provided, the high ground being supplied by direct pumping, and a pressure of about 90 pounds maintained in the business portion, and the lower part of the city being supplied by gravity, from a reservoir at an elevation of 210 feet, thus giving the business portions of the city, on high and low ground, about the same pressure. By an arrangement of valves, a combination of these two systems is effected, so that the Holly machinery can furnish an increased fire pressure at a moment's notice, into either or both pipe systems. Thus at some points the pressure is extremely high during the progress of fires, causing difficulties that do not exist where the gravity system of works is used exclusively.

Elevators have become an established institution, and in cities of any commercial importance are regarded as a necessity, hotels, jobbing houses, factories, and office buildings being considered as far behind the times when not thus provided, as a city without a water supply or a community without a "boom." The use of elevators has made it practicable and profitable to erect buildings twice as high as were formerly thought of. Perhaps some of the most notable examples of this are in New York city, where such structures as the Mills building, the buildings of the Tribune, Evening Post, and Western Union Telegraph Co.. tower high above the surrounding blocks, monuments of architecture, that without this modern invention would reflect little credit upon their designers. It is now found less labor to go to to the fifth, sixth, or even tenth floors of these great buildings than it was to reach the second or third, before their use. In these days, merchants can shoot a ton of goods to the top of their stores in less time than it would take to get breath for the old hoist or "Yo, heave O" arrangement. Thousands of dollars are sometimes expended on a single elevator, the cars are miniature parlors, and the mechanism has perhaps advanced to nearly the perfection of the modern steam engine.

If then they have become such a firmly established institution, their bearing upon the water supply of cities is a subject to be carefully considered.

As before intimated, there are many questions involved in the use of hydraulic elevators, that particularly concern towns supplied by direct pumping, and perhaps other places where the supply by gravity is somewhat limited. In a few larger cities supplied by ample reservoirs and mains, some of the difficulties suggested are not serious. Very little power is necessary to perform the actual work of lifting, with either steam or hydraulic elevators, but on account of the peculiar application of the power, and the great amount of friction to be overcome, a very considerable power has to be provided. It has been estimated, by good authorities, that not more than one-quarter of the power expended in most cases is really utilized.

With all hydraulic elevators of which I have cognizance, as much water is required to raise the empty cars as though they were loaded to maximum capacity. Still, to be available for passenger purposes elevators must have capacity of upward of 2,500 pounds, particularly in hotels, where the cars are often arranged with separate compartments underneath for baggage. In general use it is exceptional that passenger elevators are fully loaded; on the contrary less than half a load is ordinarily carried, and for this reason it would appear that no actual benefit is derived from at least one-half of the water consumed. In this connection it has occurred to me that passenger elevators could be built at no great additional cost, with two cylinders, small and large, the two piston rods of which could be connected so as to both operate the same cable, either or both furnishing power, the smaller cylinder to be used for light loads, the larger for heavy work, and the two together for full capacity, this independent valve arrangement to be controlled by a separate cable running through the car.