By L. F. Nilson

The density of thorium as obtained by reducing the anhydrous chloride by means of sodium was found by Chydenius, 7.657 to 7.795. The author has obtained metallic thorium by heating sodium with the double anhydrous thorium potassium chloride, in presence of sodium chloride in an iron crucible. After treating the residue with water there remains a grayish, heavy, sparkling powder, which under the microscope appears to consist of very small crystals. Metallic thorium is brittle and almost infusible; the powder takes a metallic luster under pressure, is permanent in the air at temperatures up to 120°, takes fire below a red heat either in air or oxygen, and burns with a dazzling luster, leaving a residue of perfectly white thoria. If heated with chlorine, bromine, iodine, and sulphur, it combines with them with ignition. It is not attacked by water, cold or hot. Dilute sulphuric acid occasions the disengagement of hydrogen, especially if heated, but the metal is acted on very slowly. Concentrated sulphuric acid with the aid of heat attacks the metal very slightly, evolving sulphurous anhydride. Nitric acid, strong or weak, has no sensible action. Fuming hydrochloric acid and aqua regia attack thorium readily, but the alkalies are without action.

The metal examined by the author behaves with the reagents in question the same as did the specimens obtained by Berzelius. The mean specific gravity of pure thorium is about 11. Hence it would seem that the metal obtained by Chydenius must have contained much foreign matter. The specific gravity of pure thoria is 10.2207 to 10.2198. The equivalent and the density being known, we may calculate the atomic volume. If we admit that the metal is equivalent to 4 atoms of hydrogen, we obtain the value 21.1. This number coincides with the atomic volumes of zirconium (21.7), cerium (21.1), lanthanum (22.6), and didymium (21.5). This analogy is certainly not due to chance; it rather confirms the opinion which I have put forward in connection with my researches on the selenites, on certain chloro-platinates and chloro-platinites, etc., that the elements of the rare earths form a series of quadrivalent metals.

[AMERICAN CHEMICAL JOURNAL.]