General Warren considered that the valley of Lake Winnipeg only belonged to the Mississippi since the "Ice Age," and explained the changes of drainage of the great north by the theory of the local elevation of the land. Facts which settle this question have recently been collected in Minnesota State by Mr. Upham, although differently explained by that geologist. However, he did not go far enough back in time, for doubtless the Winnipeg Valley discharged southward before the last days of the "Ice Age," and the great changes in the river courses were not entirely produced by local elevation, but also by the filling of the old water channels with drift deposits and sediments. Throughout the bottom of the Red River Valley a large number of wells have been sunk to great depths, and these show the absence of hard rock to levels below that of Lake Winnipeg; but some portions of the Minnesota River flow over hard rock at levels somewhat higher. Whether the presence of these somewhat higher rocks is due entirely to the local elevation, which we know took place, or to the change in the course of the old river, remains to be seen.

Mr. Upham has also shown that there is a valley connecting the Minnesota River, at Great Bend at Mankato, with the head waters of the Des Moines River, as I predicted to General Warren a few months before his death. At the time when Lake Winnipeg was swollen to its greatest size, extending southward into Minnesota, as far as Traverse Lake, it had a length of more than 600 miles and a breadth of 250 miles.

Its greatest tributary was the Saskatchewan--a river nearly as large as the Missouri. It flowed in a deep broad cañon now partly filled with drift deposits, in some places, to two hundred feet or more in depth.

Another tributary, but of a little less size, was the Assiniboine, now emptying into the Red River, at the city of Winnipeg. Following up this river, in a westerly direction, one passes into the Qu'Appelle Valley--the upper portion of which is now filled with drift, as first shown by Prof. H. Y. Hind. This portion of the valley is interesting, for through it, before being filled with drift, the south branch of the Saskatchewan River formerly flowed, and constituted an enormous river. But subsequent to the Great River Age, when choked with drift, it sent its waters to the North Saskatchewan as now seen. There were many other changes in the course of the ancient rivers to the north, but I cannot here record them.

As we have seen, the ancient Mississippi and its tributaries were vastly larger rivers than their modern representatives. At the close of the Great River Age, the whole continent subsided to many hundred feet below its present level, or some portions to even thousands of feet. During this subsidence, the Mississippi States north of the Ozark Mountains formed the bed of an immense lake, into the quiet waters of which were deposited soils washed down by the various rivers from the northwestern and north central States and the northern territories of Canada. These sediments, brought here from the north, constitute the bluff formation of the State, and are the source of the extraordinary fertility of our lands, on which the future greatness of our State depends. However, time will not permit me to enter into the application of the facts brought forward to agricultural interests. But although this address is intended to be in the realm of pure science, I cannot refrain from saying a word to our engineering students as to the application of knowledge of river geology to their future work. The subject of river geology is yet in its infancy, and I have known of much money being squandered for want of its knowledge.

In one case, I saved a company several thousand dollars, though I should have been willing to give a good subscription to see the work carried out from the scientific point of view.

I will briefly indicate a few interesting points to the engineer. Sometimes in making railway cuttings it is possible to find an adjacent buried valley through which excavations can be made without cutting hard rock. In bridge building especially, in the western country, a knowledge of the buried valleys is of the utmost importance. Again, in sinking for coal do not begin your work from the bed of a valley, unless it be of hard rock, else you may have to go through an indefinite amount of drift and gravel; and once more, in boring for artesian wells, it sometimes happens that good water can be obtained in the loose drift filling these ancient valleys; but when you wish to sink into harder rock, do not select your site of operations on an old buried valley, for the cost of sinking through gravel is greater than through ordinary rock.

In closing, let us consider to what the name Mississippi should be given. In point of antiquity, the Ohio and Upper Mississippi are of about the same age, but since the time when ingrowing southward they united, the latter river has been the larger. The Missouri River, though longer than the Mississippi, is both smaller and geographically newer--the upper portion much newer.

Above Ft. Snelling, the modern Mississippi, though the larger body of water, should be considered as a tributary to that now called Minnesota, while the Minnesota Valley is really a portion of the older Mississippi Valley--both together forming the parent river, which when swollen to the greatest volume had the Saskatchewan River for a tributary, and formed the grandest and mightiest river of which we have any record.--Kansas City Review.