[Footnote: Lately read before the Society of Telegraph Engineers and Electricians.]


The battery which I have brought here to-night to introduce to your notice is of the circulating kind, in which the alimentary fluid employed passes from cell to cell by gravitation, and maintains the action of the battery as long as it continues to flow. It cannot, of course, compare with such abundant sources of electricity as dynamo-electric machines driven by steam power, but for purposes in which a current of somewhat greater volume and constancy than that furnished by the ordinary voltaic batteries is required, it will, I believe, be found in some cases useful. A single fluid is employed, and each cell is provided with an overflow spout.

The cells are arranged upon steps, in order that the liquid may flow from the cell on the topmost step through each successive cell by gravitation [specimen cells were on the table before the audience] to the reservoir at the bottom. The top and the bottom reservoirs are of equal capacity, and are fitted with taps. The topmost tap is used to regulate the flow of the solution, and the bottom one to draw it off. In each cell two carbon plates are suspended above a quantity of fragments of amalgamated zinc. The following is a sectional drawing of the arrangement of the cell:

The Cascade Battery 363 10b

A copper wire passes down to the bottom of the cell and makes connection with the mercury; this wire is covered with gutta-percha, except where immersed in the mercury. The pores of the carbon plates are filled with paraffin wax. This battery was first employed for the purpose of utilizing waste solution from bichromate batteries, a great quantity of which is thrown away before having been completely exhausted. This waste is unavoidable, in consequence of the impossibility of permitting such batteries, when employed for telegraphic purposes, to run until complete exhaustion or reduction of the solutions has been effected; therefore some valuable chemicals have to be sacrificed to insure constancy in working. The fragments of zinc in this cell were also the remains of amalgamated zinc plates from the bichromate batteries, and the mercury which is employed for securing good metallic connection is soon augmented by that remaining after the dissolution of the zinc. It will therefore be seen that not only the solution, but also the zinc and mercury remnants of bichromate batteries are utilized, and at the same time a considerable quantity of electricity is generated.

The cells are seven inches deep and six inches wide, outside, and contain about a quart of solution in addition to the plates. The battery which I employ regularly, consisting of 18 cells, is at present working nine permanent current Morse circuits, which previously required 250 telegraphic Daniell cells to produce the same effect, and is capable of working at least ten times the number of circuits which I have mentioned; but as we do not happen to have any more of such permanent current Morse circuits, we are unable to make all the use possible of the capabilities of the battery. The potential of one cell is from 1.9 to 2 volts with strong solution, and the internal resistance varies from 0.108 to 0.170 of an ohm with cells of the size described. In order to test the constancy of the battery, a red heat was maintained in a platinum-iridium wire by the current for six weeks, both day and night.

The absence or exhaustion of the zinc in any one cell in a battery is indicated by the appearance of a red insoluble chromic salt of mercury, in a finely divided state, floating in the faulty cell. It is then necessary to drop in some pieces of zinc. The state of the zinc supply may also be ascertained at any time by feeling about in the cells with a stick. When not required, the battery may be washed by simply charging the top reservoir with water, and leaving it to circulate in the usual manner, or the solution may be withdrawn from each cell by a siphon. A very small flow of the solution is sufficient to maintain the required current for telegraphic working, but if the flow be stopped altogether for a few hours, no difference is observed in the current, although when the current is required to be maintained in a conductor of a few ohms resistance, as in heating a platinum wire, it is necessary that the circulation be maintained [heating a piece of platinum ribbon]. The battery furnishing the current for producing the effect you now see is of five cells, and as that number is reduced down to two, you see a glow still appears in the platinum. The platinum strip employed was 5 inches long and 1/8 inch wide, its resistance being 0.42 ohm, cold.

That gives an idea of the volume of current flowing. I have twelve electro magnets in printing instruments joined up on the table, and [joining up the battery] you see that the two cells are sufficient to work them. The twelve electro-magnets are being worked (by the two cells) in multiple arc at the same time. The current from the cells which heated the platinum wire is amply sufficient to magnetize a Thomson recorder. I have maintained five inches of platinum ribbon in a red hot state for two hours, in order to make sure that the battery I was about to bring before you was in good order. The cost of working such a battery when waste solution cannot be obtained, and it is necessary to use specially prepared bichromate solution, is about 2¼d. per cell per day, with a current constantly active in a Thomson recorder circuit, or a resistance of 1½ ohms per cell; but if only occasionally used, the same quantity of solution will last several weeks.

A comparison of this with another form of constant battery, the Daniell, as used in telegraphy, shows that six of these cells, with a total electromotive force of 12 volts and an internal resistance of 0.84 of an ohm, cannot be replaced by less than 71 batteries of 10 cells each, connected in multiple arc, or for quantity. This result, however large it may appear, is considerably below that which may be obtained when working telegraphic lines. A current of 0.02 weber, or ampere, will work an ordinary sounder or direct writing Morse circuit; the cascade battery is capable of working 100 such circuits at the same time, while the combined resistance of that number of lines would not be below that in which it is found that the battery is constant in action.

Objection may be made to the arrangement of the battery on the score of waste of zinc by local action, because of the electro positive metal being exposed to the chromic liquid; but if the battery be out of action and the circulation stopped, the zinc amalgam is protected by the immobility of the liquid and the formation of a dense layer of sulphate of zinc on its surface. When in action, that effect is neutralized from the fact that carbon in chromic acid is more highly electro-negative than the chromate of mercury formed upon the zinc amalgam, and which appears to be the cause of the dissolution of the zinc even when amalgamated in the presence of chromic acid. The solution may be repeatedly passed through the battery until the absence of the characteristic warmth of color of chromic acid indicates its complete exhaustion. During a description before the Society of thermo-electric batteries some time ago, Mr. Preece mentioned that five of the thermopiles which were being tried at the Post-Office were doing the work of 2,535 of the battery cells previously employed.

Thirty of the cascade cells would have about the same potential as five such thermopiles, but would supply three and a half times the current, and be capable of doing the work of 8,872 cells if employed upon the universal battery system in the same manner as the thermo batteries referred to.

Although this battery will do all that is required for a Thomson recorder or a similar instrument much more cheaply in this country than the tray battery, and with half the number of cells, I do not think it would be the case in distant countries, on account of the difficulty and cost of transport. A solid compound of chromic and sulphuric acids could be manufactured which would overcome this difficulty, if permanent magnetic fields for submarine telegraphic instruments continue to be produced by electric vortices. In conclusion, and to enable comparisons to be made, I may mention that the work this battery is capable of performing is 732,482 foot pounds, at a total cost of 1s. 6d.