"Let us suppose a bundle of wires, in number equal to that of the letters of the alphabet, stretched horizontally between two given places, parallel with each other and distant from each other one inch.

"Let us admit that after every twenty yards the wires are connected to a solid body by a juncture of glass or jeweler's cement, so as to prevent their coming in contact with the earth or any conducting body, and so as to help them to carry their own weight. The electric battery will be placed at right angles to one of the extremities of the wires, and the bundle of wires at each extremity will be carried by a solid piece of glass. The portions of the wires that run from the glass support to the machine have sufficient elasticity and stiffness to return to their primitive position after having been brought into contact with the battery. Very near to this same glass support, on the opposite side, there descends a ball suspended from each wire, and at a sixth or a tenth of an inch beneath each ball there is placed one of the letters of the alphabet written upon small pieces of paper or other substance light enough to be attracted and raised by the electrified ball. Besides this, all necessary arrangements are taken so that each of these little papers shall resume its place when the ball ceases to attract.



"All being arranged as above, and the minute at which the correspondence is to begin having been fixed upon beforehand, I begin the conversation with my friend at a distance in this way: I set the electric machine in motion, and, if the word that I wish to transcribe is 'Sir,' for example, I take, with a glass rod, or with any other body electric through itself or insulating, the different ends of the wires corresponding to the three letters that compose the word. Then I press them in such a way as to put them in contact with the battery. At the same instant, my correspondent sees these different letters carried in the same order toward the electrified balls at the other extremity of the wires. I continue to thus spell the words as long as I judge proper, and my correspondent, that he may not forget them, writes down the letters in measure as they rise. He then unites them and reads the dispatch as often as he pleases. At a given signal, or when I desire it, I stop the machine, and, taking a pen, write down what my friend sends me from the other end of the line."

The author of this letter points out, besides, the possibility of keeping, in the first place, all the springs in contact with the battery, and, consequently, all the letters attracted, and of indicating each letter by removing its wire from the battery, and consequently making it fall. He even proposed to substitute bells of different sounds for the balls, and to produce electric sparks upon them. The sound produced by the spark would vary according to the bell, and the letters might thus be heard.

Nothing, however, in this document authorizes the belief that Charles Marshall ever realized his idea, so we must proceed to 1774 to find Lesage, of Geneva, constructing a telegraph that was based upon the principle indicated twenty years before in the letter of Renfrew.

The apparatus that Lesage devised (Fig. 1) was composed of 24 wires insulated from one another by a non conducting material. Each of these wires corresponded to a small pith ball suspended by a thread. On putting an electric machine in communication with such or such a one of these wires, the ball of the corresponding electrometer was repelled, and the motion signaled the letter that it was desired to transmit. Not content with having realized an electric telegraph upon a small scale, Lesage thought of applying it to longer distances.

"Let us conceive," said he in a letter written June 22, 1782, to Mr. Prevost, of Geneva, "a subterranean pipe of enameled clay, whose cavity at about every six feet is separated by partitions of the same material, or of glass, containing twenty-four apertures in order to give passage to as many brass wires as these diaphragms are to sustain and keep separated. At each extremity of this pipe are twenty-four wires that deviate from one another horizontally, and that are arranged like the keys of a clavichord; and, above this row of wire ends, are distinctly traced the twenty-four letters of the alphabet, while beneath there is a table covered with twenty-four small pieces of gold-leaf or other easily attractable and quite visible bodies."

Lesage had thought of offering his secret to Frederick the Great; but he did not do so, however, and his telegraph remained in the state of a curious cabinet experiment. He had, nevertheless, opened the way, and, dating from that epoch, we meet with a certain number of attempts at electrostatic telegraphy. [1]

[Footnote 1: Advantage has been taken of a letter from Alexander Volta to Prof. Barletti (dated 1777), indicating the possibility of firing his electric pistol from a great distance, to attribute to him a part in the invention of the telegraph. We have not shared in this opinion, which appears to us erroneous, since Volta, while indicating the possibility above stated, does not speak of applying such a fact to telegraphy.]

The first in date is that of Lemond, which is spoken of by Arthur Young (October 16, 1787), in his Voyage Agronomique en France:

"In the evening," says he, "we are going to Mr. Lemond's, a very ingenious mechanician, and one who has a genius for invention.... He has made a remarkable discovery in electricity. You write two or three words upon paper; he takes them with him into a room and revolves a machine within a sheath at the top of which there is an electrometer--a pretty little ball of feather pith. A brass wire is joined to a similar cylinder, and electrified in a distant apartment, and his wife on remarking the motions of the ball that corresponds, writes down the words that they indicate; from whence it appears that he has formed an alphabet of motions. As the length of the wire makes no difference in the effect, a correspondence might be kept up from very far off, for example with a besieged city, or for objects much more worthy of attention. Whatever be the use that shall be made of it, the discovery is an admirable one."