[Footnote: A paper recently read before the Society of Arts, London.]


As this paper is composed from a technical point of view, some elucidation of facts, forming the basis of it, is desirable before we proceed to the chronological statement of the subject. These facts are the strings, and their strain or tension; the sound-board, which is the resonance factor; and the bridge, connecting it with the strings. The strings, sound-board, and bridge are indispensable, and common to all stringed instruments. The special fact appertaining to keyboard instruments is the mechanical action interposed between the player and the instrument itself. The strings, owing to the slender surface they present to the air, are, however powerfully excited, scarcely audible. To make them sufficiently audible, their pulsations have to be communicated to a wider elastic surface, the sound-board, which, by accumulated energy and broader contact with the air, re-enforces the strings' feeble sound. The properties of a string set in periodic vibration are the best known of the phenomena appertaining to acoustics.

The molecules composing the string are disturbed in the string's vibrating length by the means used to excite the sound, and run off into sections, the comparative length and number of which depend partly upon the place in the string the excitement starts from; partly upon the force and the form of force that is employed; and partly upon the length, thickness, weight, strain, and elasticity of the string, with some small allowance for gravitation. The vibrating sections are of wave-like contour; the nodes or points of apparent rest being really knots of the greatest pressure from crossing streams of molecules. Where the pressure slackens, the sections rise into loops, the curves of which show the points of least pressure. Now, if the string be struck upon a loop, less energy is communicated to the string, and the carrying power of the sound proportionately fails. If the string be struck upon a node, greater energy ensues, and the carrying power proportionately gains. By this we recognize the importance of the place of contact, or striking-place of the hammer against the string; and the necessity, in order to obtain good fundamental tone, which shall carry, of the note being started from a node.

If the hammer is hard, and impelled with force, the string breaks into shorter sections, and the discordant upper partials of the string, thus brought into prominence, make the tone harsh. If the hammer is soft, and the force employed is moderated, the harmonious partials of the longer sections strike the ear, and the tone is full and round. By the frequency of vibration, that is to say, the number of times a string runs through its complete changes one way and the other, say, for measurement, in a second of time, we determine the pitch, or relative acuteness of the tone as distinguished by the ear.

We know, with less exactness, that the sound-board follows similar laws. The formation of nodes is helped by the barring of the sound-board, a ribbing crosswise to the grain of the wood, which promotes the elasticity, and has been called the "soul" of stringed musical instruments. The sound-board itself is made of most carefully chosen pine; in Europe of the Abies excelsa, the spruce fir, which, when well grown, and of light, even grain, is the best of all woods for resonance. The pulsations of the strings are communicated to the sound-board by the bridge, a thick rail of close-grained beech, curved so as to determine their vibrating lengths, and attached to the sound-board by dowels. The bridge is doubly pinned, so as to cut off the vibration at the edge of the bearing the strings exert upon the bridge. The shock of each separate pulsation, in its complex form, is received by the bridge, and communicated to such undamped strings as may, by their lengths, be sensitive to them; thus producing the aeolian tone commonly known as sympathetic, an eminently attractive charm in the tone of a pianoforte.

We have here strings, bridge, and sound-board, or belly, as it is technically called, indispensable for the production of the tone, and indivisible in the general effect. The proportionate weight of stringing has to be met by a proportionate thickness and barring of the sound-board, and a proportionate thickness and elevation of the bridge.

The tension of the strings is met by a framing, which has become more rigid as the drawing power of the strings has been gradually increased. In the present concert grands of Messrs. Broadwood, that drawing power may be stated as starting from 150 lb. for each single string in the treble, and gradually increasing to about 300 lb. for each of the single strings in the bass. I will reserve for the historical description of my subject some notice of the different kinds of framing that have been introduced. It will suffice, at this stage, to say that it was at first of wood, and became, by degrees, of wood and iron; in the present day the iron very much preponderating. It will be at once evident that the object of the framing is to keep the ends of the strings apart. The near ends are wound round the wrest-pins, which are inserted in the wooden bed, called the wrest-plank, the strength and efficiency of which are most important for the tone and durability of the instrument. It is composed of layers of wainscot oak and beech, the direction of the grain being alternately longitudinal and lateral. Some makers cover the wrest-plank with a plate of brass; in Broadwood's grands, it is a plate of iron, into which, as well as the wood, the wrest-pins are screwed.

The tuner's business is to regulate the tension, by turning the wrest-pins, in which he is chiefly guided by the beats which become audible from differing numbers of vibrations. The wrest-plank is bridged, and has its bearing like the soundboard; but the wrest-plank has no vibrations to transfer, and should, as far as possible, offer perfect insensibility to them.