The whole arrangement will be left in working order at the close of the meeting for any gentlemen present to verify my statements or to make what experiments they please.

In conclusion, I would ask, what can we as practical men gather from these experiments? A great deal has been written and said as to the best means to secure conductors carrying currents of very low tension, such as telephone circuits, from being influenced by induction from conductors in their immediate vicinity employed in carrying currents of comparatively very high tension, such as the ordinary telegraph wires. Covering the insulated wires with one or other of the various metals has not only been suggested but said to have been actually employed with marked success. Now, it will found that a thin sheet of any known metal will in no appreciable way interrupt the inductive lines of force passing between two flat spirals; that being so, it is difficult to understand how inductive effects are influenced by a metal covering as described.

Telegraph engineers and electricians have done much toward accomplishing the successful working of our present railway system, but still there is much scope for improvements in the signaling arrangements. In foggy weather the system now adopted is comparatively useless, and resource has to be had at such times to the dangerous and somewhat clumsy method of signaling by means of detonating charges placed upon the rails. Now, it has occurred to me that volta induction might be employed with advantage in various ways for signaling purposes. For example, one or more wire spirals could be fixed between the rails at any convenient distance from the signaling station, so that when necessary intermittent currents could be sent through the spirals; and another spiral could be fixed beneath the engine or guard's van, and connected to one or more telephones placed near those in charge of the train. Then as the train passed over the fixed spiral the sound given out by the transmitter would be loudly reproduced by the telephone and indicate by its character the signal intended.

One of my experiments in this direction will perhaps better illustrate my meaning. The large spiral was connected in circuit with twelve Leclanche cells and the two make and break transmitters before described. They were so connected that either transmitter could be switched into circuit when required, and this I considered the signaling station. This small spiral was so arranged that it passed in front of the large one at the distance of 8 in. and at a speed of twenty-eight miles per hour. The terminals of the small spiral were connected to a telephone fixed in a distant room, the result being that the sound reproduced from either transmitter could be clearly heard and recognized every time the spirals passed each other. With a knowledge of this fact I think it will be readily understood now a cheap and efficient adjunct to the present system of railway signaling could be obtained by such means as I have ventured to bring to your notice this evening.

Thus have I given you some of the thoughts and experiments which have occupied my attention during my leisure. I have been long under the impression that there is a feeling in the minds of many that we are already in a position to give an answer to almost every question relating to electricity or magnetism. All I can say is, that the more I endeavor to advance in a knowledge of these subjects, the more am I convinced of the fallacy of such a position. There is much yet to be learnt, and if there be present either member, associate, or student to whom I have imparted the smallest instruction, I shall feel that I have not unprofitably occupied my time this evening.