[Footnote: Annual address delivered by President J.A. Price before the meeting of the Scranton Board of Trade, Monday, January 18, 1886.]

By J.A. PRICE.

Iron is the basis of our civilization. Its supremacy and power it is impossible to overestimate; it enters every avenue of development, and it may be set down as the prime factor in the world's progress. Its utility and its universality are hand in hand, whether in the magnificent iron steamship of the ocean, the network of iron rail upon land, the electric gossamer of the air, or in the most insignificant articles of building, of clothing, and of convenience. Without it, we should have miserably failed to reach our present exalted station, and the earth would scarcely maintain its present population; it is indeed the substance of substances. It is the Archimedean lever by which the great human world has been raised. Should it for a moment forget its cunning and lose its power, earthquake shocks or the wreck of matter could not be more disastrous. However axiomatic may be everything that can be said of this wonderful metal, it is undoubtedly certain that it must give way to a metal that has still greater proportions and vaster possibilities.

Strange and startling as may seem the assertion, yet I believe it nevertheless to be true that we are approaching the period, if not already standing upon the threshold of the day, when this magical element will be radically supplanted, and when this valuable mineral will be as completely superseded as the stone of the aborigines. With all its apparent potency, it has its evident weaknesses; moisture is everywhere at war with it, gases and temperature destroy its fiber and its life, continued blows or motion crystallize and rob it of its strength, and acids will devour it in a night. If it be possible to eliminate all, or even one or more, of these qualities of weakness in any metal, still preserving both quantity and quality, that metal will be the metal of the future.

The coming metal, then, to which our reference is made is aluminum, the most abundant metal in the earth's crust. Of all substances, oxygen is the most abundant, constituting about one-half; after oxygen comes silicon, constituting about one-fourth, with aluminum third in all the list of substances of the composition. Leaving out of consideration the constituents of the earth's center, whether they be molten or gaseous, more or less dense as the case may be, as we approach it, and confining ourselves to the only practical phase of the subject, the crust, we find that aluminum is beyond question the most abundant and the most useful of all metallic substances.

It is the metallic base of mica, feldspar, slate, and clay. Professor Dana says: "Nearly all the rocks except limestones and many sandstones are literally ore-beds of the metal aluminum." It appears in the gem, assuming a blue in the sapphire, green in the emerald, yellow in the topaz, red in the ruby, brown in the emery, and so on to the white, gray, blue, and black of the slates and clays. It has been dubbed "clay metal" and "silver made from clay;" also when mixed with any considerable quantity of carbon becoming a grayish or bluish black "alum slate."

This metal in color is white and next in luster to silver. It has never been found in a pure state, but is known to exist in combination with nearly two hundred different minerals. Corundum and pure emery are ores that are very rich in aluminum, containing about fifty-four per cent. The specific gravity is but two and one-half times that of water; it is lighter than glass or as light as chalk, being only one-third the weight of iron and one-fourth the weight of silver; it is as malleable as gold, tenacious as iron, and harder than steel, being next the diamond. Thus it is capable of the widest variety of uses, being soft when ductility, fibrous when tenacity, and crystalline when hardness is required. Its variety of transformations is something wonderful. Meeting iron, or even iron at its best in the form of steel, in the same field, it easily vanquishes it at every point. It melts at 1,300 degrees F., or at least 600 degrees below the melting point of iron, and it neither oxidizes in the atmosphere nor tarnishes in contact with gases.

The enumeration of the properties of aluminum is as enchanting as the scenes of a fairy tale.

Before proceeding further with this new wonder of science, which is already knocking at our doors, a brief sketch of its birth and development may be fittingly introduced. The celebrated French chemist Lavoisier, a very magician in the science, groping in the dark of the last century, evolved the chemical theory of combustion--the existence of a "highly respirable gas," oxygen, and the presence of metallic bases in earths and alkalies. With the latter subject we have only to do at the present moment. The metallic base was predicted, yet not identified. The French Revolution swept this genius from the earth in 1794, and darkness closed in upon the scene, until the light of Sir Humphry Davy's lamp in the early years of the present century again struck upon the metallic base of certain earths, but the reflection was so feeble that the great secret was never revealed. Then a little later the Swedish Berzelius and the Danish Oersted, confident in the prediction of Lavoisier and of Davy, went in search of the mysterious stranger with the aggressive electric current, but as yet to no purpose.

It was reserved to the distinguished German Wohler, in 1827, to complete the work of the past fifty years of struggle and finally produce the minute white globule of the pure metal from a mixture of the chloride of aluminum and sodium, and at last the secret is revealed--the first step was taken. It took twenty years of labor to revolve the mere discovery into the production of the aluminum bead in 1846, and yet with this first step, this new wonder remained a foetus undeveloped in the womb of the laboratory for years to come.