By Prof. Francis E. Nipher

It was known six hundred years before Christ that when amber is rubbed it acquires the power of attracting light bodies. The Greek name for amber, elektron, was afterward applied to the phenomenon. It was also known to the ancients that a certain kind of iron ore, first found at Magnesia, in Asia Minor, had the property of attracting iron. This phenomenon was called magnetism. This is the history of electricity and magnetism for two thousand years, during which these facts stood alone, like isolated mountain peaks, with summits touched and made visible by the morning sun, while the region surrounding and connecting them lay hidden and unexplored.

In fact, it is only in more recent times that men could be found possessing the necessary mental qualities to insure success in physical investigation. Some of the ancients were acute observers, and made valuable observations in descriptive natural history. They also observed and described phenomena which they saw around them, although often in vague and mystical terms.

They, however, were greatly lacking in power to discriminate between the possible and the absurd, and so old wives' tales, acute speculations, and truthful observations are strangely jumbled together. With rare exceptions they did not contrive new conditions to bring about phenomena which Nature did not spontaneously exhibit - they did not experiment. They attempted to solve the universe in their heads, and made little progress.

In mediaeval times intellectual men were busy in trying to set each other right, and in disputing and arguing with those who believed themselves to be right. It was an era of intellectual pugilism, and nothing was done in physics. In fact, this frame of mind is incompatible with any marked success in scientific work.

The physical investigator cannot take up his work in the spirit of controversy; for the phenomena and laws of Nature will not argue with him. He must come as a learner, and the true man of science is content to learn, is content to lay his results before his fellows, and is willing to profit by their criticisms. In so far as he permits himself to assume the mental attitude of one who defends a position, in so far does he reveal a grave disqualification for the most useful scientific work. Scientific truth needs no man's defense, but our individual statements of what we believe to be truth frequently need criticism. It is hardly necessary to remark, also, that critics are of various degrees of excellence, and it seems that those in whom the habit of criticism has become chronic are of comparatively little service to the world.

The great harbinger of the new era was Galileo. There had been prophets before him, and after him came a greater one - Newton. They did nothing of note in electricity and magnetism, but they were filled with the true spirit of science, they introduced proper and reasonable methods of investigation, and by their great ability and distinguished success they have produced a revolution in the intellectual world. Other great men had also appeared, such as Leibnitz and Huyghens; and it became very clear that the methods of investigation which had borne such fruit in the days of Galileo were not disposed of completely by his unwilling recantation; it became very clear that the new civilization which was dawning upon Europe was not destined to the rude fate which had overwhelmed the brilliant scientific achievements of the Spanish Moors of a half century before.

Already in 1580, about the time when Galileo entered Pisa as a student, Borroughs had determined the variation of the magnetic needle at London, and we have upon the screen a view of his instrument, which seems rude enough, in comparison with the elaborate apparatus of our times. The first great work on electricity and magnetism was the "De Magnete" of Gilbert, physician of Queen Elizabeth, published in 1600. Galileo, already famous in Europe, recognized in the methods of investigation used by Gilbert the ones which he had found so fruitful, and wrote of him, "I extremely praise, admire, and envy this author."

Gilbert made many interesting contributions to magnetism, which we shall notice in another lecture, and he also found that sulphur, glass, wax, and other bodies share with amber the property of being electrified by friction. He concluded that many bodies could not be thus electrified. Gray, however, found in 1729 that these bodies were conductors of electricity, and his discoveries and experiments were explained and described to the president of the Royal Society while on his death bed, and only a few hours before his death. If precautions are taken to properly insulate conductors, all bodies which differ in any way, either in structure, in smoothness of surface, or even in temperature, are apparently electrified by friction. In all cases the friction also produces heat, and if the bodies rubbed are exactly alike, heat only is produced.

An electrified body will attract all light bodies. This gutta percha when rubbed with a cat's skin attracts these bits of paper, and this pith ball, and this copper ball; it moves this long lath balanced on its center, and deflects this vertical jet of water into a beautiful curve.

If a conductor is to be electrified, it must be supported by bad conductors. This brass cylinder standing on a glass column has become electrified by friction with cat's-skin. My assistant will stand upon this insulating stool, and by stroking his hand you will observe that with his other hand he can attract this suspended rod of wood, and you will hear a feeble spark when I apply my knuckle to his.

Du Fay, of Paris, discovered what he called two kinds of electricity. He found that a glass rod rubbed with silk will repel another glass rod similarly rubbed, but that the silk would attract a rubbed glass rod. We express the facts in the well-known law that like electricities repel each other, and unlike attract. For a long time the nature of the distinctions between the two electricities was not understood. It was found later that when the two bodies are rubbed together they become oppositely electrified, and that the two electricities are always generated in equal quantity; so that if the two bodies are held in contact after the rubbing has ceased the two electricities come together again and the electrical phenomena disappear. They have been added together, and the result is zero. Franklin proposed to call these electricities positive and negative. These names are well chosen, but we do not know any reason why one should be called positive rather than the other. The electricity generated on glass when rubbed with silk is called positive.