Under the carriage attached to the framing are four reservoirs, holding about three and a half cubic feet of water, of which water space one-half acts as a reservoir for cold feed water, and half for the condensed water. A tube from the small reservoir on the engine communicates through valves with the reservoirs of hot and cold water on the carriage.

The consumption of cold water measured during two days was 2.86 lb. per kilometer; assuming that the boiler evaporated 6.5 lb. of water per pound of coal, the cold water formed one-fifth of the total feed water required.

The carriage, i. e., the part occupied by passengers, is 21 ft. 8 in. in length. It holds seats for forty-five passengers, besides those who would stand on the gangway and platform. The seats are placed transversely on each side of a central corridor, each seat holding two people. The platform of the carriage is about 2 ft. 6 in. above the rails. Passengers have access to the interior from behind by means of the end platform, and in front near the engine from the two sides. As already mentioned, the hind part of the carriage rests upon two wheels, the front part being, as already mentioned, supported on the engine bogie. To effect this support, the hinder part of the framing of the engine is formed in a half circle, with a broad groove, in which the ends of two springs are arranged to slide. The centers of the springs form the support of the framing of the carriage.

The framing of the engine bogie is attached to the hind bogie truck of the carriage by two diagonal drawbars. The coupling is effected by bolts close to the engine, and the car is drawn entirely by means of the bogie pin of the hind bogie. The trucks are 16.5 ft. apart.

Table I. above shows the dimensions of different parts of these three steam motors, as well as their weights.

The Beaumont engine, worked by compressed air, may be generally said to be similar to that described in a paper read before the Society of Arts on the 16th March, 1881, to which, however, some improvements have been since introduced.

The apparatus for compressing the air was placed in the shed. The air was compressed to 63 atmospheres by a pump worked by a steam engine, and stored in cylindrical reservoirs of wrought iron without rivets. A pipe led the air from the reservoirs to the head of the tramway, where the cylinder placed on the motor for storing the air during the journey could be conveniently charged.

The air was compressed by means of four pumps, placed two and two in a water-box, and worked by the direct action of a compound engine, with cylinders, placed in juxtaposition, of 8 in. and 14 in. diameter respectively, with an equal length of stroke of 13 in.

 TABLE I.

Krauss. Wilkinson. Rowan.

Diameter of cylinder.........d 5.5 in. 6.5 in. 5.1 in.

Length of stroke.............l 11.8 in. 9 in. 9.8 in.

Diameter of wheels...........D 31.5 in. 27.5 in. 29.5 in.

Pressure at which

boiler is worked...........P 220 lb. 147 lb. 191 lb.

(p(d²)l)/(2D)................E 1,210 lb. 1,509 lb. 805 lb.

Total heating surface........S 105 sq. ft. 105 sq. ft. 64 sq. ft.

Grate surface................G 2.7 sq. ft. 5.4 sq. ft. 3.1 sq. ft.

Surface of condenser.........C 274.482 s. ft. None. 861.120 s. ft.

Weight in running order

(motor only)...............P' 15,400 lb. 15,400 lb. 9,020 lb.

Weight in running order

(total)....................P" - - 15,400 lb.

Contents of water tank.......- 28.24 cub. ft. 13 cub. ft. 4.2 cub. ft.

Contents of coal bunks.......- 14.12 cub. ft. 12.5 cub. ft. 8.5 cub. ft. P'/E 12.7 lb. 10.2 lb. 11.2 lb. P"/E - - 19.125 lb. P'/S 146 147 140 P'/G 5,722 2,855 2,889 C/S 2.6 - 13.4 C/G 102 - 275 

The air, after being forced through the first pump cylinder, passed successively through the other three, the diameters of which were of proportionately decreasing sizes, viz., 8.2 in., 5 in., 3.5 in., and 2 in., and the air on leaving each cylinder passed on its way to the next cylinder through a coiled pipe immersed in flowing water to remove the heat generated. This cooling surface amounted to nearly 54 sq. ft.

The cooling of the air was very efficient. In an experiment made on this question, the temperature of the compressor did not vary to the extent of 9° F. in charging the reservoir from 40 to 63 atmospheres, occupying an hour and a half, the consumption of water during the time being about 1,400 gallons.

The fixed reservoirs were of about 240 cubic feet capacity.

The motor formed part of a compound vehicle, which may be said to have consisted of two parts joined together by an articulated corridor, the whole being covered by a roof which was approached from the platform behind by an easy staircase. On this roof were seats for outside passengers.

The front part of the compound vehicle contained the motor, as well as a compartment for six inside passengers, with roof space for twenty passengers, and weighed about 15,400 lb. when empty; the hind part contained accommodation inside for twelve passengers, and outside for fourteen passengers, and weighed 6,600 lb.

The combined vehicle was entered from the platform in the rear, which could hold four passengers, and from thence, as already mentioned, the staircase led on to the roof. The total number of passengers this vehicle could accommodate was thus eighteen inside, thirty-four on the roof, four on the platform, or fifty-six in all.

The total length of the carriage was 29 ft. 7 in., the width 7 ft. The distance between the axes of the bogies was 16 ft. 9 in. The distances apart of the centers of the wheels were in the case of the hind bogie 3 ft. 9 in., and in the case of the front bogie 4 ft. 4.6 in.

The motor is a compound engine, the diameters of the cylinders being 4.9 in. and 1.9 in., with a 12 in. stroke. The diameter of the wheels was 2 ft. 4 in. A small boiler is placed on one side, in front, for creating steam, which passes into a steam-jacket, inclosing the pipe of communication from the reservoir to the cylinders, as well as the cylinders themselves, so that the air was warmed before it escaped. The reservoirs on the motor contained 71 cubic feet.