The apparatus shown in Figs. 21 and 22 permits of signaling in three ways:

1. Upon the Clouds. - In this case the mirror, A, is removed, and the projector inclined above the horizon in such a way as to illuminate the clouds to as great a distance as possible. A maneuver of the occultator, E, between the lamp and the mirror arrests the luminous rays of the source, or allows them to pass, and thus produces upon the clouds the dots and dashes of the conventional alphabet.

2. Isolated Communication by Luminous Fascicles. - When it is desired to correspond to a short distance of 2 or 3 miles, and establish a communication between two isolated posts, the mirror, A, is put in place upon its support, B. The luminous fascicle emanating from the source reflected by the mirror is thrown vertically. By revolving the mirror 90° around its horizontal axis the fascicle becomes horizontal, and may thus be thrown in a given direction at unequal intervals and during irregular times, and furnish conventional signs.

3. Night Communication upon the Entire Horizon. - When we wish to correspond at a short distance, say two miles, and make signals visible from the entire horizon, the mirror, A, is put in place, so that it shall reflect the luminous fascicle vertically. The fascicle, at a distance of about fifty feet, meets a white balloon which it renders visible from every point in the horizon. The maneuver of the occultator brings the balloon out of darkness or plunges it thereinto again, and thus produces the signs necessary for aerial communication.

Use Of The Projector In Optical Telegraphy 508 12c
Fig. 24.

These ingenious arrangements, which depend upon the state of the atmosphere, do not appear to have been imitated outside of the navy.

Capt. Gaumet's Optical Telegraph

The system of optical communication proposed by Capt. Gaumet, and which he names the Telelogue, is based upon the visibility of colored or luminous objects, and upon the possibility of piercing the opaque curtain formed by the atmosphere between the observer's eye and a signal, by utilizing the difference in brightness that exists between such objects and the atmosphere. It is a question, then, of giving such difference in intensity its maximum of brightness. To do this, Capt. Gaumet proposes to employ silvered signals upon a black background. He uses the simple letters of the alphabet, but changes their value. His apparatus has the form of a large album glued at the back to a sloping desk. Each silvered letter, glued to a piece of black cloth, is seen in relief upon the open register. A sort of index along the side, as in commercial blank-books, permits of quickly finding any letter at will. Such is the manipulator of the apparatus.

The receiver consists of a spy-glass affixed to the board that carries the register. For a range of two and a half miles, the complete apparatus, with a 12×16 inch manipulator and telescope, weighs but four and a half pounds. For double this range, with a 20×28 inch manipulator and telescope, the total weight is thirteen pounds. The larger apparatus, according to the inventor, have a range of seven miles.

For night work the manipulator is lighted either by one lamp, or by two lamps with reflector, placed laterally against it.

This apparatus, although well known, and having been publicly experimented with, has not, to our knowledge, been applied practically. From a military standpoint, its short range will evidently not permit it to compete with optical telegraphic apparatus, properly so called. Perhaps it might rather be of service for private communications between localities not very far apart, since it costs but little and is easily operated.

Optical Signaling Between Bodies Of Troops

Optical communications by signals, during day and night, with experienced men, may, in the absence of telephones, telegraphs, and messengers, render important service when the distance involved is greater than two thousand feet.

This mode of correspondence is based upon the use of the Morse alphabet. The signals are divided into night and day ones. The day signals are made with small flags. When these are wanting, sheets of white cardboard may be used. The night signals are made with a lantern provided with a support, which may be fixed to a wall or upon a bayonet.

In day signaling, the dashes of the Morse alphabet are formed by means of two flags (Fig. 23) held simultaneously at arm's length by the signaler. The dots are formed with a single flag held in the right hand (Fig. 24). In this way it is possible, by extremely simple combinations, to establish a correspondence, and produce any conventional signal. By means of relay stations, the signals may be transmitted from one to another to a great distance.

In signaling with the lantern, long and short interruptions of the luminous source are produced by means of a screen.

Optical Telegraphy By Luminous Balloons

Various interesting experiments have been made with a view to utilizing luminous captive balloons for optical communications. As we have already seen, this maybe effected by using opaque balloons, and throwing upon them at unequal intervals a luminous fascicle by means of a projector. As for using a luminous source placed in the car of a balloon, that cannot be thought of in the present state of aeronautic science; the continual rotation of the balloon around its axis would render the projection and reception of the signals in a given direction impossible.

Optical Telegraphy In The Marine

For communicating optically from ship to ship during the day, the marine uses flags of different forms and colors, and flames. Between ships and the land there are used what are called semaphore signals, which are made by means of a mast provided with three arms and a disk placed at the upper part. The combinations of signs thus obtained, which are analogous in principle to those of the Chappe telegraph, permit of satisfactorily communicating to a distance.

On board ship, hand signals are used like those employed by the army for communicating between bodies of troops. For night communications the marine employs lights corresponding to the day flags, as well as rockets, and luminous rays projected by means of reflectors and intercepted by screens.

In conclusion, it may be said that optical telegraphy, which has only within a few years emerged from the domain of theory to enter that of practice, has taken a remarkable stride in the military art and in science. It is due to its processes that Col. Perrier has in recent years been enabled to carry out certain geodesic work that would have formerly been regarded as impracticable, notably the prolongation of the arc of the meridian between France and Spain. Very recently, an optical communication established between Mauritius and Reunion islands, to a distance of 129 miles, with 24 inch apparatus, proved that, in certain cases, the costly laying of a submarine cable may be replaced by the direct emission of a luminous ray.

[1]

Continued from page 8094.