Certain mechanical devices appear to exercise a remarkable influence on some minds, and engineers are blamed for not adopting them, in no very measured terms in some cases. It is not in any way necessary that these devices should have been invented by the men who advocate their adoption, in order to secure that advocacy. The intrinsic attractions of the scheme suffice to evoke eulogy; and engineers sometimes find it very difficult to make those who believe in such devices understand that there are valid reasons standing in the way of their adoption. One such device is hydraulic propulsion. A correspondent in a recent impression suggested its immediate and extended use in yachts at all events, and we willingly published his letter, because the system does no doubt lend itself very freely to adoption for a particular class of yachts, namely, those provided with auxiliary power only. But because this is the case it must not be assumed that the jet propeller is better than screw or paddle-wheel propulsion; and it is just as well, before, correspondence extends further, that we should explain why and in what way it is not satisfactory.

The arguments to be urged in favor of hydraulic propulsion are many and cogent; but it will not fail to strike our readers, we think, that all these arguments refer, not to the efficiency of the system, but to its convenience. A ship with a hydraulic propeller can sail without let or hindrance; a powerful pump is provided, which will deal with an enormous leak, and so on. If all the good things which hydraulic propulsion promises could be had combined with a fair efficiency, then the days of the screw propeller and the paddle wheel would be numbered; but the efficiency of the hydraulic propeller is very low, and we hope to make the reason why it is low intelligible to readers who are ignorant of mathematics. Those who are not ignorant of them will find no difficulty in applying them to what we have to say, and arriving at similar conclusions in a different way.

Professor Greenhill has advanced in our pages a new theory of the screw propeller. As the series of papers in which he puts forward his theory is not complete, we shall not in any way criticise it; but we must point out that the view he takes is not that taken by other writers and reasoners on the subject, and in any case it will not apply to hydraulic propulsion. For these reasons we shall adhere in what we are about to advance to the propositions laid down by Professor Rankine, as the exponent of the hitherto received theory of the whole subject. When a screw or paddle wheel is put in motion, a body of water is driven astern and the ship is driven ahead. Water, from its excessive mobility, is incapable of giving any resistance to the screw or paddle save that due to its inertia. If, for example, we conceive of the existence of a sea without any inertia, then we can readily understand that the water composing such a sea would offer no resistance to being pushed astern by paddle or screw. When a gun is fired, the weapon moves in one direction - this is called its recoil - while the shot moves in another direction.

The same principal - pace Professor Greenhill - operates to cause the movement of a ship. The water is driven in one direction, the ship in another. Now, Professor Rankine has laid down the proposition that, other things being equal, that propeller must be most efficient which sends the largest quantity of water astern at the slowest speed. This is a very important proposition, and it should be fully grasped and understood in all its bearings. The reason why of it is very simple. Returning for a moment to our gun, we see that a certain amount of work is done on it in causing it to recoil; but the whole of the work done by the powder is, other things being equal, a constant quantity. The sum of the work done on the shot and on the gun in causing their motions is equal to the energy expended by the powder, consequently the more work we do on the gun, the less is available for the shot. It can be shown that, if the gun weighed no more than the shot, when the charge was ignited the gun and the shot would proceed in opposite directions at similar velocities - very much less than that which the shot would have had had the gun been held fast, and very much greater than the gun would have had if its weight were, as is usually the case, much in excess of that of the shot.

In like manner, part of the work of a steam engine is done in driving the ship ahead, and part in pushing the water astern. An increase in the weight of water is equivalent to an augmentation in the weight of our gun and its carriage - of all that, in short, takes part in the recoil.

But, it will be urged, it is just the same thing to drive a large body of water astern at a slow speed as a small body at a high speed. This is the favorite fallacy of the advocates of hydraulic propulsion. The turbine or centrifugal pump put into the ship drives astern through the nozzles at each side a comparatively small body of water at a very high velocity. In some early experiments we believe that a velocity of 88 ft. per second, or 60 miles an hour, was maintained. A screw propeller operating with an enormously larger blade area than any pump can have, drives astern at very slow speed a vast weight of water at every revolution; therefore, unless it can be shown that the result is the same whether we use high speed and small quantities or low speed and large quantities, the case of the hydraulic propeller is hopeless. But this cannot be done. It is a fact, on the contrary, that the work wasted on the water increases in a very rapid ratio with its speed. The work stored up in the moving water is expressed in foot pounds by the formula

W v²
2g

where W stands for the weight of the water, and v for its velocity. But the work stored in the water must have been derived from the engine; consequently the waste of engine power augments, not in the ratio of the speed of the water, but in the ratio of the square of its speed. Thus if a screw sends 100 tons of water astern at a speed of 10 ft. per second per second, the work wasted will be 156 foot tons per second in round numbers. If a hydraulic propeller sent 10 tons astern at 100 ft. per second per second, the work done on it would be 1,562 foot tons per second, or ten times as much. But the reaction effort, or thrust on the ship, would be the same in both cases. The waste of energy would, under such circumstances, be ten times as great with the hydraulic propeller as with the screw. In other words, the slip would be magnified in that proportion. Of course, it will be understood that we are not taking into account resistances, and defects proper to the screw, from which hydraulic propulsion is free, nor are we considering certain drawbacks to the efficiency of the hydraulic propeller, from which the screw is exempt; all that we are dealing with is the waste of power in the shape of work done in moving water astern which we do not want to move, but cannot help moving.

If our readers have followed us so far, they will now understand the bearing of Rankine's proposition, that that propeller is best which moves the greatest quantity of water astern at the slowest speed. The weight of water moved is one factor of the thrust, and consequently the greater that weight, other things being equal, the greater the propelling force brought to bear on the ship.

It may be urged, and with propriety, that the results obtained in practice with the jet propeller are more favorable than our reasoning would indicate as possible; but it will be seen that we have taken no notice of conditions which seriously affect the performance of a screw. There is no doubt that it puts water in motion not astern. It twists it up in a rope, so to speak. Its skin frictional resistance is very great. In a word, in comparing the hydraulic system with the normal system, we are comparing two very imperfect things together; but the fact remains, and applies up to a certain point, that the hydraulic propeller must be very inefficient, because it, of all propellers, drives the smallest quantity of water astern at the highest velocity.

There is, moreover, another and a very serious defect in the hydraulic propeller as usually made, which is that every ton of water passed through it has the velocity of the ship herself suddenly imparted to it. That is to say, the ship has to drag water with her. To illustrate our meaning, let us suppose that a canal boat passes below a stage or platform a mile long, on which are arranged a series of sacks of corn. Let it further be supposed that as the canal boat passes along the platform, at a speed of say five miles an hour, one sack shall be dropped into the boat and another dropped overboard continuously. It is evident that each sack, while it remains in the boat, will have a speed the same as that of the boat, though it had none before. Work consequently is done on each sack, in overcoming its inertia by imparting a velocity of five miles an hour to it, and all this work must be done by the horse towing on the bank. In like manner the hydraulic propeller boat is continually taking in tons of water, imparting her own velocity to them, and then throwing them overboard. The loss of efficiency from this source may become enormous. So great, indeed, is the resistance due to this cause that it precludes the notion of anything like high speeds being attained.

We do not mean to assert that a moderate degree of efficiency may not be got from hydraulic propulsion, but it can only be had by making the quantity of water sent astern as great as possible and its velocity as small as possible. That is to say, very large nozzles must be employed. Again, provision will have to be made for sending the water through the propeller in such a way that it shall have as little as possible of the motion of the ship imparted to it. But as soon as we begin to reduce these principles to practice, it will be seen that we get something very like a paddle wheel hung in the middle of the boat and working through an aperture in her hull, or else a screw propeller put into a tube traversing her from stem to stern.

We may sum up by saying that the hydraulic propeller is less efficient than the screw, because it does more work on the water and less on the boat; and that the boat in turn does more work on the water than does one propelled by a screw, because she has to take in thousands of tons per hour and impart to them a velocity equal to her own. Part of this work is got back again in a way sufficiently obvious, but not all. If it were all wasted, the efficiency of the hydraulic propeller would be so low that nothing would be heard about it, and we certainly should not have written this article. - The Engineer.