M. Trouve exhibited a small boat and a tricycle, both worked by Plante accumulators, at Paris, in 1881.

The first locomotive actuated by storage batteries was used at a bleaching works in France in 1882. During the same year I designed an electric street car for the storage company, and this was tried on the lines of the West Metropolitan Tramways in March, 1883. It had accommodation for 46 passengers. This car had many defects, and I reconstructed it entirely, and ran it afterward in its improved form on the South London Tramways, and also on a private track at Millwall, where it is now in good condition, and I have a similar car in Berlin. M. Phillippart exhibited a car in Paris and M. Julien made successful experiments in Brussels, Antwerp, and Hamburg. Mr. Elieson is running storage battery locomotives in London. Mr. Julien has also been experimenting with a car in New York, and I believe one is in course of construction for a line in the city of Boston. Messrs. W. Wharton, Jr. & Co. have a storage battery car running at Philadelphia on Spruce and Pine streets, and this energetic firm is now fitting up another car with two trucks, each carrying an independent motor, similar to my European cars.

I have mentioned all these facts in order to show that there is a considerable amount of activity displayed in the matter of storage batteries for street cars, and that continued and substantial progress is being made in each successive case. The prejudices against the application of secondary batteries are being rapidly dispelled, and there are indications everywhere that this method of propulsion will soon take a recognized place among the great transit facilities in the United States. I feel convinced that this country will also in this respect be far ahead of Europe before another year has passed over our heads.

There are several popular and I may say serious objections to the employment of storage batteries for propelling street cars. These objections I will now enumerate, and endeavor to show how far they are true, and in what measure they interfere with the economical side of the question.

First objection: The loss of energy, which amounts in practice to 20 and sometimes 30 per cent. Now, every method of storing or transmitting energy involves some waste, but in saying this we need not condemn the system, for after all the term efficiency is only a relative one. For instance, a 10 horse power steam engine consumes three times as much fuel per horse power hour as a 1,000 horse power engine does, yet this small engine must be, and is regarded as, one of the most economical labor-saving appliances known to us. Considered as a heat engine, the efficiency of the most economical steam motor is but ten per cent. - 90 per cent of the available units of heat contained in coal being lost during its transformation into mechanical energy. Thus, if we find that the storage battery does not return more than 70 per cent, of the work expended in charging it, we ought not to condemn it on that account until we have ascertained whether this low efficiency renders the system unfit for any or all commercial purposes.

It is needless to go into figures in order to show that, when compared with animal power, this objection drops into insignificance.

The second, more formidable, objection relates to the weight of storage batteries - and this involves two disadvantages, viz., waste of power in propelling the accumulator along with the car, and increased pressure upon the street rails, which are only fitted to carry a maximum of 5 tons distributed over 4 points, so that each wheel of an ordinary car produces a pressure of 1¼ tons upon a point of the rail immediately under it.

The last mentioned objection is easily overcome by distributing the weight of the car with its electrical apparatus over 8 wheels or 2 small trucks, whereby the pressure per unit of section on the rails is reduced to a minimum. With regard to the weight of the storage batteries, relatively to the amount of energy the same are capable of holding and transmitting, I beg to offer a few practical figures. Theoretically, the energy manifested in the separation of one pound of lead from its oxide is equivalent to 360,000 foot pounds, but these chemical equivalents, though interesting in themselves, gives us no tangible idea of the actual capacity of a battery.

Repeated experiments have shown me that the capacity of a secondary battery cell varies with the rate at which it is charged and discharged. For instance, a cell such as we use on street cars gave a useful capacity of 137.3 ampere hours when discharged at the average rate of 45.76 amperes, and this same cell yielded 156.38 ampere hours when worked at the rate of 22.34 amperes. At the commencement of the discharge the E.M.F of the battery was 2.1 volts, and this was allowed to drop to 1.87 volts when the experiment was concluded. The entire active material contained in the plates of one cell weighed 11.5 lb., therefore the energy given off per pound of active substance at the above high rate of discharge was 62.225 foot pounds, and when discharging at the lower rate of 22.34 amperes the available useful energy was 72.313 foot pounds, or nearly 2.2 electrical horse power per pound of active matter. But this active substance has to be supported, and the strength or weight of the support has to be made sufficiently great to give the plate a definite strength and durability. The support of the plates inclusive of the terminals above referred to weighs more than the active material, which consists of peroxide of lead and spongy lead; so that the plates of one cell weigh actually 26.5 pounds.

Add to this the weight of the receptacle and acid, and you get a total of about 41 pounds per cell when in working order. Seventy of these cells will propel an ordinary street car for four hours and a half, while consuming the stored energy at the rate of 30 amperes, or over 5.6 electrical horse power. The whole set of seventy cells weighs 2,870 lb., which is barely one-fifth of the entire weight of the car when it carries forty adult passengers. Therefore the energy wasted in propelling the accumulator along with a ear does not amount to more than 20 per cent. of the total power, and this we can easily afford to lose so long as animal power is our only competitor. From numerous and exhaustive tests with accumulators on cars in this country and abroad, I have come to the conclusion that the motive power for hauling a full-sized street car for fifteen hours a day does not exceed $1.75, and this includes fuel, water, oil, attendance, and repairs to engine, boiler, and dynamo. We have thus an immense margin left between the cost of electric traction and horse traction, and the last objection, that relating to the depreciation of the battery plates, can be most liberally met, and yet leave ample profits over the old method of propulsion by means of animals.