By C.H. HUDSON.

Many of the wheels that were still in use with the long hub were put into a lathe, and a groove was cut an inch and a half back from the face, leaving our cast collar, which was easily split off as before. (Fig. 24.)

With tender wheels, as with our car wheels, the case was different. Originally, the axle for the 5 ft. gauge was longer than for the 4 ft. 9 in.; but latterly the 5 ft. roads had used a great many master car builders' axles for the 4 ft. 9 in. gauge, namely, 6 ft. 11¼ in. over all, thus making the width of the truck the same as for 4 ft. 9 in. gauge. To do this a dished wheel, or rather a wheel with a greater dish by 1½ in. than previously used, was needed, so that the tread of the wheel could be at its proper place. (See Fig. 25.) There were, of course, many of the wheels with small dish and long axles still in use. Their treatment, however, when the day of change came, did not vary from that of the short axle.

FIG. 24 and FIG. 25
FIG. 24 and FIG. 25

It had been the rule for some years that all axles should be turned back 1½ in. further than needed; but unfortunately the rule had not been closely followed, and many were found not to be so turned. To make the matter worse, quite a number of the wheels were found to have been counterbored about ½ in. deep at the back end, and the axle turned up to fit this counterbore; a good idea to prevent the running in, in case the wheel worked loose, but bad from the standpoint of a change of gauge. In such cases the wheels had to be started off before the axle could be turned back, so that the wheels could be pushed on in their proper position. (Fig. 26.)

The Change Of Gauge Of Southern Railroads In 1886 623 4b
FIG. 26

If the work was done where they had a lathe large enough to swing a pair of wheels, they were pressed off but half an inch, the wheels swung in the lathe, the axles turned back 1½ in., and the wheels then pressed on 2 in. or 1½ in. inside of their first position.

Where no large lathe was in use, the wheels came entirely off before the axles could be turned back. The work in the former case was both the quicker and the cheaper. Where the large lathes were used they were either set down into the floor, so a pair of wheels would easily roll into place, or a raised platform was put before the lathe, with an incline up which the wheels were rolled and then taken to the lathe. These arrangements were found much quicker and cheaper than to hoist the wheels up, as is usually done.

In pressing the wheels on, where the axles had previously been turned back, much trouble was at first experienced because of the rust that had gathered upon the turned part behind the wheel, forming a ridge over or upon which the wheel must be pushed. Some of the roads, at the start, burst 10 or 15 per cent. of the wheels so pressed on. By saturating this surface with coal oil, however, it was found that the rust was easily removed and little trouble was had. It was found, sometimes, that upon axles newly turned back a careless workman would leave a ridge at the starting point of the turning. Frequently also the axles were a little sprung, so that the new turning would be a little scant upon one side when compared with the old surface, and upon the opposite side a little full. As an indication that these difficulties were overcome as they appeared, I will say that upon our line only 202 wheels burst out of nearly 27,000 pressed on - an exceedingly small percentage.

After the change upon the early roads they were troubled for weeks with hot boxes, caused, as we believed, by the changing of brasses. A brass once fitted to a journal will work upon it without trouble, but when placed upon some other journal will probably not fit. If the journal had been worn hollow (and it was surprising to see how many were so worn), the brass would be found worn down to fit it. (See Fig. 27. Exaggerated, of course.)

FIG. 27 and FIG. 28
FIG. 27 and FIG. 28

The next wheel may have an axle worn little or none. (See Fig. 28)

Now, if these brasses are exchanged, we have the conditions as shown in Figs. 29 and 30, and we must expect they will heat. The remedy was simply to keep each brass upon its own journal. To do this the brasses were fastened to the axle by a piece of small wire, and went with it to the lathe and press. When its truck was reached, the brass was there with its journal. Worn-out brasses, of course, could not be put in, and new ones were substituted. The little trouble from that source that followed the change showed the efficacy of the remedy.

FIG. 29 and FIG. 30
FIG. 29 and FIG. 30

The manner in which the tires of engines were to be changed, when the final day came, was a serious question. The old-fashioned fire upon the ground could not be thought of. The M. & O. had used a fire of pine under the wheel, which was covered by a box of sheet iron, so arranged that the flame and heat would be conveyed around the tire, and out at an aperture at the top. (Fig. 31.) Many thought this perfect, while others were not satisfied, and began experiments for something better. A device for using gas had been patented, but it was somewhat complicated, as well as expensive, and did not meet with general favor. A very simple device was soon hit upon. A two inch pipe was bent around in a circle a little larger than the outer rim of the wheel. Holes 1/10 in. in diameter and 3 or 4 in. apart were drilled through the pipe on the inside of the circle. To this pipe was fastened another with a branch or fork upon it. To one branch or fork was connected a gas pipe from the meter, while to the other was connected a pipe from an air pump.