For nearly one hundred and fifty years all refracting telescopes labored under one serious difficulty. The images formed by them were more or less confused by rainbow tints, due to the bending, or refracting, by the object glass of the rays of light. To overcome this obstacle to clear vision, and also to secure magnification, the focal lengths of the instruments were greatly extended. Telescopes 38, 50, 78, 130, 160, 210, 400, and even 600 feet long were constructed. I can, however, find nothing on record indicating that the object glasses of these enormously attenuated instruments ever exceeded in diameter two and one-half inches. Yet, with unwieldy and ungainly telescopes, nearly always defining badly, wonders were accomplished by the painstaking and indomitable observers of the time.

In 1658, Huyghens, using a telescope twenty-three feet long and two and one-third inches in diameter, with a power of 100, solved the mystery of Saturn's rings, which had resisted all of Galilei's efforts as well as his own with a shorter instrument, though he had discovered Titan, Saturn's largest moon, and fixed correctly its period of revolution at sixteen days. Fifteen years later, Ball, with a telescope thirty-eight feet long, discovered the principal division in the rings. Ten years still later, Cassini, with an instrument twenty feet long and an object glass two and one-half inches in diameter, rediscovered the division, which was named after him, rather than after Ball, who had taken no pains to make widely known his discovery, which, in the meantime, had been forgotten. Though we have no record, there is no doubt that the lamented Horrocks and Crabtree, in England, in 1639, with glasses no better than these, watched with exultant emotions the first transit of Venus ever seen by human eyes.

In 1722, Bradley, with a telescope 223¼ feet long, succeeded in measuring the diameter of the same planet. Yet Grant assures us that, in spite of all their difficulties, such was the industry of the astronomers that when, at the commencement of this century, it became possible to construct larger refracting telescopes, there was nothing to be discovered that could have been discovered with the means at their disposal. So far as we now know, a good three-inch telescope, nay, a first-rate two inch one, will show far more than our great-grandfathers ever saw, or dreamed of seeing, with their refractors.

Toward the middle of the seventeenth century the reflecting telescope had been so much improved as nearly to crowd out its refracting rival, but, just as its success seemed to be assured, Dollond, working along lines partially followed up by Hall, found a combination of lenses by which the chromatic aberration of the refractor could be very perfectly corrected. While Dollond's invention was of immense value, it remained that flint object glasses larger than two and one-half inches in diameter could not, for some years, be manufactured, but about the opening of the nineteenth century, Guinand, a Swiss, discovered a process of making masses of optical flint glass sufficiently large as to admit of the construction from them of excellent lenses of sizes gradually increasing as time and experimenting went on. The making of three-inch objectives, achromatic and of short focus, wrought a revolution in telescopes and renewed the demand for refractors, though prices, as compared with those of the present day, were very great. But improvement was succeeded by improvement.

Larger and still larger objectives were made, yet progress was not so rapid as not to justify Grant, in 1852, in declaring to be a "munificent gift" the presentation, about 1838, to Greenwhich Observatory, of a six and seven-tenths object glass alone, and so it was esteemed by Mr. Airy, the astronomer royal. Improvement is still the order of the day, and, as a result of keen competition, very excellent telescopes of small aperture can be purchased at reasonable prices. Great telescopes are enormously expensive, and will probably be so until they are superseded by some simple invention which shall be as superior to them as they are to the "mighty" instruments which, from time to time, caused such sensations in the days of Galilei, Cassini, Huyghens, Bradley, Dollond, and those who came after them.

But, notable as are the services rendered to science by giant telescopes, it remains that by far the greater bulk of useful work has been done by apertures of less than twelve inches in diameter. Indeed, it may be asserted that most of such work has been done by instruments of six inches or less in size. After referring with some detail to this, Denning tells us that "nearly all the comets, planetoids, double stars, etc., owe their detection to small instruments; that our knowledge of sun spots, lunar and planetary features is also very largely derived from similar sources; that there is no department which is not indebted to the services of small telescopes, and that of some thousands of drawings of celestial objects, made by observers employing instruments from three to seventy-two inches in diameter, a careful inspection shows that the smaller instruments have not been outdone in this interesting field of observation, owing to their excellent defining powers and the facility with which they are used." Aperture for aperture, the record is more glorious for the "common telescope" than for its great rivals.

Let us for a moment recall something of what has been done with instruments which may be embraced under the designation "common" as such a statement may serve to remove impressions that small telescopes are but of little use in astronomical work.

In his unrivaled book, Webb declares that his observations were chiefly made with a telescope five and one-half feet long, carrying an object glass of a diameter of three and seven-tenths inches. The instrument was of "fair defining quality," and one has but to read his delightful pages in order to form an idea of the countless pleasures Webb derived from observation with it. Speaking of it, he says that smaller ones will, of course, do less, especially with faint objects, but are often very perfect and distinct, and that even diminutive glasses, if good, will, at least, show something never seen without them. He adds: "I have a little hand telescope twenty-two and one-quarter inches long, when fully drawn out, with a focus of about fourteen inches, and one and one-third inches aperture; this, with an astronomical eye-piece, will show the existence of sun spots, the mountains in the moon, Jupiter's satellites and Saturn's ring." In another place, speaking of the sun, he says that an object glass of only two inches will exhibit a curdled or marbled appearance over the whole solar disk, caused by the intermixture of spaces of different brightness. And I may add here that Dawes recommends a small aperture for sun work, including spectroscopic examinations, he himself, like Mr. Miller, our librarian, preferring to use for that purpose a four inch refractor.