To the two divisions of bacteria, Haplobacterinae and Trichobacterinae, must now be added a third division, Myxobacterinae. One of the first members of this group, Chondromyces crocatus, was described as long ago as 1857 by Berkeley, but its nature was not understood and it was ascribed to the Hyphomycetes. In 1892, however, Thaxter rediscovered it and showed its bacterial nature, founding for it and some allied forms the group Myxobacteriaceae. Another form, which he described as Myxobacter, was shown later to be the same as Polyangium vitellinum described by Link in 1795, the exact nature of which had hitherto been in doubt. Thaxter's observations and conclusions were called in question by some botanists, but his later observations and those of Baur have established firmly the position of the group. The peculiarity of the group lies in the fact that the bacteria form plasmodium-like aggregations and build themselves up into sporogenous structures of definite form superficially similar to the cysts of the Mycetozoa (fig. 12). Most of the forms in question are found growing on the dung of herbivorous animals, but the bacteria occur not only in the alimentary canal of the animal but also free in the air.

The Myxobacteria are most easily obtained by keeping at a temperature of 30-35° C. in the dark dung which has lain exposed to the air for at least eight days. The high temperature is favourable to the growth of the bacteria but inimical to that of the fungi which are so common on this substratum.

The discoveries that some species of nitrifying bacteria and Function and life of bacteria. perhaps pigmented forms are capable of carbon-assimilation, that others can fix free nitrogen and that a number of decompositions hitherto unsuspected are accomplished by Schizomycetes, have put the questions of nutrition and fermentation in quite new lights. Apart from numerous fermentation processes such as rotting, the soaking of skins for tanning, the preparation of indigo and of tobacco, hay, ensilage, etc., in all of which bacterial fermentations are concerned, attention may be especially directed to the following evidence of the supreme importance of Schizomycetes in agriculture and daily life. Indeed, nothing marks the attitude of modern bacteriology more clearly than the increasing attention which is being paid to useful fermentations. The vast majority of these organisms are not pathogenic, most are harmless and many are indispensable aids in natural operations important to man.

Fig. 13. Germination of the spore of Bacillus ramosus.

Fig. 13. - A series of phases of germination of the spore of B. ramosus sown at 8.30 (to the extreme left), showing how the growth can be measured. If we place the base of the filament in each case on a base line in the order of the successive times of observation recorded, and at distances apart proportional to the intervals of time (8.30, 10.0, 10.30, 11.40, and so on) and erect the straightened-out filaments, the proportional length of each of which is here given for each period, a line joining the tips of the filaments gives the curve of growth. (H. M. W.)

Fischer has proposed that the old division into saprophytes and parasites should be replaced by one which takes into account other peculiarities in the mode of nutrition of bacteria. The nitrifying, nitrogen-fixing, sulphur- and iron-bacteria he regards as monotrophic, i.e. as able to carry on one particular series of fermentations or decompositions only, and since they require no organic food materials, or at least are able to work up nitrogen or carbon from inorganic sources, he regards them as primitive forms in this respect and terms them Prototrophic. They may be looked upon as the nearest existing representatives of the primary forms of life which first obtained the power of working up non-living into living materials, and as playing a correspondingly important rôle in the evolution of life on our globe. The vast majority of bacteria, on the other hand, which are ordinarily termed saprophytes, are saprogenic, i.e. bring organic material to the putrefactive state - or saprophilous, i.e. live best in such putrefying materials - or become zymogenic, i.e. their metabolic products may induce blood-poisoning or other toxic effects (facultative parasites) though they are not true parasites.

These forms are termed by Fischer Metatrophic, because they require various kinds of organic materials obtained from the dead remains of other organisms or from the surfaces of their bodies, and can utilize and decompose them in various ways (Polytrophic) or, if monotrophic, are at least unable to work them up. The true parasites - obligate parasites of de Bary - are placed by Fischer in a third biological group, Paratrophic bacteria, to mark the importance of their mode of life in the interior of living organisms where they live and multiply in the blood, juices or tissues.

When we reflect that some hundreds of thousands of tons of Nitrogen bacteria. urea are daily deposited, which ordinary plants are unable to assimilate until considerable changes have been undergone, the question is of importance, What happens in the meantime? In effect the urea first becomes carbonate of ammonia by a simple hydrolysis brought about by bacteria, more and more definitely known since Pasteur, van Tieghem and Cohn first described them. Lea and Miquel further proved that the hydrolysis is due to an enzyme - urase - separable with difficulty from the bacteria concerned. Many forms in rivers, soil, manure heaps, etc., are capable of bringing about this change to ammonium carbonate, and much of the loss of volatile ammonia on farms is preventible if the facts are apprehended. The excreta of urea alone thus afford to the soil enormous stores of nitrogen combined in a form which can be rendered available by bacteria, and there are in addition the supplies brought down in rain from the atmosphere, and those due to other living débris. The researches of later years have demonstrated that a still more inexhaustible supply of nitrogen is made available by the nitrogen-fixing bacteria of the soil.