The first of these, lysogenic or bacteriolytic action, consists in (a) Lysogenic action. the production of a change in the corresponding bacterium whereby it becomes granular, swells up and ultimately may undergo dissolution. Pfeiffer was the first to show that this occurred when the bacterium was injected into the peritoneal cavity of the animal immunized against it, and also when a little of the serum of such an animal was injected with the bacterium into the peritoneum of a fresh, i.e. non-immunized animal. Metchnikoff and Bordet subsequently devised means by which a similar change could be produced in vitro, and analysed the conditions necessary for its occurrence. It has been completely established that in this phenomenon of lysogenesis there are two substances concerned, one specially developed or developed in excess, and the other present in normal serum. The former (Immunkörper of Ehrlich, substance sensibilisatrice of Bordet) is the more stable, resisting a temperature of 60° C., and though giving the specific character to the reaction cannot act alone.

The latter is ferment-like and much more labile than the former, being readily destroyed at 60° C. It may be added that the protective power is not lost by exposure to the temperature mentioned, this apparently depending upon a specific anti-substance. Furthermore, lysogenic action is not confined to the case of bacteria but obtains also with other organized structures, e.g. red corpuscles (Bordet, Ehrlich and Morgenroth), leucocytes and spermatozoa (Metchnikoff). That is to say, if an animal be treated with injections of these bodies, its serum acquires the power of dissolving or of producing some disintegrative effect in them. The development of the immune body with specific combining affinity thus presents an analogy to antitoxin production, the difference being that in lysogenesis another substance is necessary to complete the process. It can be shown that in many cases when bacteria are injected the serum of the treated animal has no bacteriolytic effect, and still an immune body is present, which leads to the fixation of complement; in this case bacteriolysis does not occur, because the organism is not susceptible to the action of the complement.

In all cases the important action is the binding of complement to the bacterium by means of the corresponding immune body; whether or not death of the bacterium occurs, will depend upon its susceptibility to the action of the particular complement, the latter acting like a toxin or digestive ferment. It is to be noted that in the process of immunization complement does not increase in amount; accordingly the immune serum comes to contain immune body much in excess of the amount of complement necessary to complete its action. An important point with regard to the therapeutic application of an anti-bacterial serum, is that when the serum is kept in vitro the complement rapidly disappears, and accordingly the complement necessary for the production of the bactericidal action must be supplied by the blood of the patient treated. This latter complement may not suit the immune body, that is, may not be fixed to the bacterium by means of it, or if the latter event does occur, may fail to bring about the death of the bacteria.

These circumstances serve, in part at least, to explain the fact that the success attending the use of anti-bacterial sera has been much inferior to that in the case of antitoxic sera.

Another property which may be possessed by an anti-bacterial (b) Agglutination. serum is that of agglutination. By this is meant the aggregation into clumps of the bacteria uniformly distributed in an indifferent fluid; if the bacterium is motile its movement is arrested during the process. The process is of course observed by means of the microscope, but the clumps soon settle in the fluid and ultimately form a sediment, leaving the upper part clear. This change, visible to the naked eye, is called sedimentation. B. J. A. Charrin and G. E. H. Roger first showed in the case of B. pyocyaneus that when a small quantity of the homologous serum (i.e. the serum of an animal immunized against the bacterium) was added to a fluid culture of this bacillus, growth formed a sediment instead of a uniform turbidity. Gruber and Durham showed that sedimentation occurred when a small quantity of the homologous serum was added to an emulsion of the bacterium in a small test-tube, and found that this obtained in all cases where Pfeiffer's lysogenic action could be demonstrated.

Shortly afterwards Widal and also Grünbaum showed that the serum of patients suffering from typhoid fever, even at an early stage of the disease, agglutinated the typhoid bacillus - a fact which laid the foundation of serum diagnosis. A similar phenomenon has been demonstrated in the case of Malta fever, cholera, plague, infection with B. coli, "meat-poisoning" due to Gärtner's bacillus, and various other infections. As regards the mode of action of agglutinins, Gruber and Durham considered that it consists in a change in the envelopes of the bacteria, by which they swell up and become adhesive. The view has various facts in its support, but F. Kruse and C. Nicolle have found that if a bacterial culture be filtered germ-free, an agglutinating serum still produces some change in it, so that particles suspended in it become gathered into clumps. E. Duclaux, for this reason, considers that agglutinins are coagulative ferments.

The phenomenon of agglutination depends essentially on the union of molecules in the bacteria - the agglutinogens - with the corresponding agglutinins, but another essential is the presence of a certain amount of salts in the fluid, as it can be shown that when agglutinated masses of bacteria are washed salt-free the clumps become resolved. The fact that agglutinins appear in the body at an early stage in a disease has been taken by some observers as indicating that they have nothing to do with immunity, their development being spoken of as a reaction of infection. This conclusion is not justified, as we must suppose that the process of immunization begins to be developed at an early period in the disease, that it gradually increases, and ultimately results in cure. It should also be stated that agglutinins are used up in the process of agglutination, apparently combining with some element of the bacterial structure. In view of all the facts it must be admitted that the agglutinins and immune bodies are the result of corresponding reactive processes, and are probably related to one another.