The working is thus rendered very smooth, without the jerks which the ordinary carrying tooth produces; but the arrangement has the disadvantage that the resulting figures do not appear in a straight line, a figure followed by a 5, for instance, being already carried half a step forward. This is not a serious matter in the hands of a mathematician or an operator using the machine constantly, but it is serious for casual work. Anyhow, it has prevented the machine from being a commercial success, and it is not any longer made. For ease and rapidity of working it surpasses all others. Since the lazy-tongs allow of an extension equivalent to five turnings of the handle, if the multiplier is 5 or under, one push forward will do the same as five (or less) turns of the handle, and more than two pushes are never required. Fig. 3.

The Steiger-Egli machine is a multiplication machine, of which fig. 3 gives a picture as it appears to the manipulator. The lower Multiplication machines. part of the figure contains, under the covering plate, a carriage with two rows of windows for the figures marked ff and gg. On pressing down the button W the carriage can be moved to right or left. Under each window is a figure disk, as in the Thomas machine. The upper part has three sections. The one to the right contains the handle K for working the machine, and a button U for setting the machine for addition, multiplication, division, or subtraction. In the middle section a number of parallel slots are seen, with indices which can each be set to one of the numbers 0 to 9. Below each slot, and parallel to it, lies a shaft of square section on which a toothed wheel, the A-wheel, slides to and fro with the index in the slot. Below these wheels again lie 9 toothed racks at right angles to the slots. By setting the index in any slot the wheel below it comes into gear with one of these racks. On moving the rack, the wheels turn their shafts and the figure disks gg opposite to them. The dimensions are such that a motion of a rack through 1 cm. turns the figure disk through one "step" or adds 1 to the figure under the window.

The racks are moved by an arrangement contained in the section to the left of the slots. There is a vertical plate called the multiplication table block, or more shortly, the block. From it project rows of horizontal rods of lengths varying from 0 to 9 centimetres. If one of these rows is brought opposite the row of racks and then pushed forward to the right through 9 cm., each rack will move and add to its figure disk a number of units equal to the number of centimetres of the rod which operates on it. The block has a square face divided into a hundred squares. Looking at its face from the right - i.e. from the side where the racks lie - suppose the horizontal rows of these squares numbered from 0 to 9, beginning at the top, and the columns numbered similarly, the 0 being to the right; then the multiplication table for numbers 0 to 9 can be placed on these squares. The row 7 will therefore contain the numbers 63, 56, ... 7, 0. Instead of these numbers, each square receives two "rods" perpendicular to the plate, which may be called the units-rod and the tens-rod. Instead of the number 63 we have thus a tens-rod 6 cm. and a units-rod 3 cm. long.

By aid of a lever H the block can be raised or lowered so that any row of the block comes to the level of the racks, the units-rods being opposite the ends of the racks.

The action of the machine will be understood by considering an example. Let it be required to form the product 7 times 385. The indices of three consecutive slots are set to the numbers 3, 8, 5 respectively. Let the windows gg opposite these slots be called a, b, c. Then to the figures shown at these windows we have to add 21, 56, 35 respectively. This is the same thing as adding first the number 165, formed by the units of each place, and next 2530 corresponding to the tens; or again, as adding first 165, and then moving the carriage one step to the right, and adding 253. The first is done by moving the block with the units-rods opposite the racks forward. The racks are then put out of gear, and together with the block brought back to their normal position; the block is moved sideways to bring the tens-rods opposite the racks, and again moved forward, adding the tens, the carriage having also been moved forward as required. This complicated movement, together with the necessary carrying, is actually performed by one turn of the handle. During the first quarter-turn the block moves forward, the units-rods coming into operation.

During the second quarter-turn the carriage is put out of gear, and moved one step to the right while the necessary carrying is performed; at the same time the block and the racks are moved back, and the block is shifted so as to bring the tens-rods opposite the racks. During the next two quarter-turns the process is repeated, the block ultimately returning to its original position. Multiplication by a number with more places is performed as in the Thomas. The advantage of this machine over the Thomas in saving time is obvious. Multiplying by 817 requires in the Thomas 16 turns of the handle, but in the Steiger-Egli only 3 turns, with 3 settings of the lever H. If the lever H is set to 1 we have a simple addition machine like the Thomas or the Brunsviga. The inventors state that the product of two 8-figure numbers can be got in 6-7 seconds, the quotient of a 6-figure number by one of 3 figures in the same time, while the square root to 5 places of a 9-figure number requires 18 seconds.

Machines of far greater powers than the arithmometers mentioned have been invented by Babbage and by Scheutz. A description is impossible without elaborate drawings. The following account will afford some idea of the working of Babbage's difference machine. Imagine a number of striking clocks placed in a row, each with only an hour hand, and with only the striking apparatus retained. Let the hand of the first clock be turned. As it comes opposite a number on the dial the clock strikes that number of times. Let this clock be connected with the second in such a manner that by each stroke of the first the hand of the second is moved from one number to the next, but can only strike when the first comes to rest. If the second hand stands at 5 and the first strikes 3, then when this is done the second will strike 8; the second will act similarly on the third, and so on. Let there be four such clocks with hands set to the numbers 6, 6, 1, 0 respectively. Now set the third clock striking 1, this sets the hand of the fourth clock to 1; strike the second (6), this puts the third to 7 and the fourth to 8. Next strike the first (6); this moves the other hands to 12, 19, 27 respectively, and now repeat the striking of the first.