This section is from the "Henley's Twentieth Century Formulas Recipes Processes" encyclopedia, by Norman W. Henley and others.
The phosphorus is added to the bronze in the form of copper phosphide or phosphide of tin, the two being sometimes used together. They must be specially prepared for this purpose, and the best methods will be here given. Copper phosphide is prepared by heating a mixture of 4 parts of superphosphate of lime, 2 parts of granulated copper, and 1 part of finely pulverized coal in a crucible at a temperature not too high. The melted copper phosphide, containing 14 per cent of phosphorus, separates on the bottom of the crucible.
Tin phosphide is prepared as follows: Place a bar of zinc in an aqueous solution of tin chloride. The tin will be separated in the form of a sponge-like mass. Collect it, and put it into a crucible, upon the bottom of which sticks of phosphorus have been placed. Press the tin tightly into the crucible, and expose to a gentle heat. Continue the heating until flames of burning phosphorus are no longer observed on the crucible. The pure tin phosphide, in the form of a coarsely crystalline mass, tin-white in color, will be found on the bottom of the crucible.
To prepare the phosphor bronze, the alloy to be treated is melted in the usual way, and small pieces of the copper phosphide and tin phosphide are added.
Phosphor bronze, properly prepared, has nearly the same melting point as that of ordinary bronze. In cooling, however, it has the peculiarity of passing directly from the liquid to the solid state, without first becoming thickly fluid. In a melted state it retains a perfectly bright surface, while ordinary bronze in this condition is always covered with a thin film of oxide.
If phosphor bronze is kept for a long time at the melting point, there is not any loss of tin, but the amount of phosphorus is slightly diminished.
The most valuable properties of phosphor bronze are its extraordinary tenacity and strength. It can be rolled, hammered, and stretched cold, and its strength is nearly double that of the best ordinary bronze. It is principally used in cases where great strength and power of resistance to outward influences are required, as, for instance, in objects which are to be exposed to the action of sea water.
Phosphor bronze containing about 4 per cent of tin is excellently well adapted or sheet bronze. With not more than 5 per cent of tin, it can be used, forged, for firearms. Seven to 10 per cent of tin gives the greatest hardness, and such bronze is especially suited to the manufacture of axle bearings, cylinders for steam fire engines, cogwheels, and, in general, for parts of machines where great strength and hardness are required. Phosphor bronze, if exposed to the air, soon becomes covered with a beautiful, closely adhering patina, and is therefore well adapted to purposes of art. The amount of phosphorus added varies from 0.25 to 2.5 per cent, according to the purpose of the bronze. The composition of a number of kinds of phosphor bronze is given below:
Copper | Tin | Zinc | Phosphorus | |||
I. | 85.55 | 9.85 | 3.77 | 0.62 | trs. | 0.05 |
II. | 4-15 4-15 11.00 | 8-20 7.65 | 4-15 4-15 | 0.5-3 | ||
III | 77.85 | .25-2 | ||||
IV. | ||||||
V. | 72.50 | 8.00 | 17.00 | |||
VI. | 73.50 | 6.00 | 19.00 | |||
VII. | 74.50 | 11.00 | 11.00 | |||
VIII. | 83.50 | 8.00 | 3.00 | |||
IX. | 90.34 | 8.90 | 0.76 | |||
X. | 90.86 | 8.56 | . . . . | 0.196 | ||
XI. | 94.71 | 4.39 | 0.053 |
I for axle bearings, II and III for harder and softer axle bearings, IV to VIII for railroad purposes, IV especially for valves of locomotives, V and VI axle bearings for wagons, VII for connecting rods, VIII for piston rods in hydraulic presses.
 
Continue to: