Interior op Astronomical Observatory, showing Transit Instrument. Used to Obtain Correct Local Time, by Observing the Passage op Stars Across the Meridian

Interior op Astronomical Observatory, showing Transit Instrument. Used to Obtain Correct Local Time, by Observing the Passage op Stars Across the Meridian.

Balance Cock and Patent Micrometric Regulator; also Balance Wheel and Hair Spring, Showing Patent Hair Spring Stud

Balance Cock and Patent Micrometric Regulator; also Balance Wheel and Hair Spring, Showing Patent Hair Spring Stud.

WAltham Lever Escapement.

WAltham Lever Escapement..

A Device for the Governing of Speed is the One Thing on Which Accurate Time Measuring Depends again on the other side. And so the motions continue to the number of 18,000 times per hour. If that number can be exactly maintained, the watch will measure time perfectly. But if it should fall short of that exact number only once each hour, it would result in a loss of 4.8 seconds each day, or 2.4 minutes in one month. A watch as bad as that would not be allowed on a railroad.

Now that we have given the names of each of the different parts which compose the escapement, let us see how they perform their important work of governing

Waltam Taper Shoulder Deachuble Balance Staff.

Waltam Taper Shoulder Deachuble Balance Staff..

the speed of the little machine for measuring time. In the escape wheel, the left arm of the pallet rests on the inclined top of one of the wheel teeth. This is the position of rest. If we wind up the mainspring of the watch it will immediately cause the main wheel to turn, and, of course, that will turn the next wheel, and so on to the escape wheel. When that wheel turns to the right, as it must, it will force back the arm of the pallet which swings on its arbor. In swinging out in this way it must also swing in the other pallet arm, and that movement will bring it directly in front of another wheel tooth, so that the wheel can turn no further. It is locked and will remain so until something withdraws it. When the pallet was swung so as to cause this locking, the fork was also moved, and as it enclosed the roller pin, that too was moved and carried with it the roller and the balance wheel, and in so doing it deflected the hair spring from its condition of rest. And as the spring tried to get back to its place of rest it carried back the balance also. In going back, the balance acquired a little momentum, and so could not stop when it reached its former position, but went a little further, and, of course, the roller and its pin also went along in company, the pin carrying the fork and the pallet swinging in the other direction, which unlocked the escape wheel tooth. Its inclined top gave the pallet a little "push" so that the first pallet was locked, forcing the fork and roller, and the balance and hair spring, to move in the opposite direction. And so the alternate actions proceed, and the balance wheel travels further each time, until it reaches the greatest amount which the force of the mainspring can give. But before this extreme is reached, the momentum of the revolving balance carries the roller pin entirely out of the fork. As the fork is allowed to move only just far enough to allow the pin to pass out, it simply waits until the fork returns and enters its place, only to escape

Accurate Measurements are Essential to Correct Time Keeping

Accurate Measurements are Essential to Correct Time Keeping.

Isn't it wonderful that such a delicate piece of mechanism can be made to run so accurately? And the wonder is increased by the fact that the little machine is, to a great extent, continually moved about, and liable to extreme changes in position and in temperature. Watches of the highest grades are adjusted to five positions as well as to temperature. Some are adjusted to temperature and three positions, and still others to temperature only. The way in which a watch is made to automatically compensate for temperature changes is interesting. Varying degrees of heat and cold always affect a watch. It is a law of nature that all simple metals expand under the influence of heat and therefore contract when affected by cold. Alloys, or mixtures of different metals, act in a similar manner, but in varying degrees. Some combinations of metals possess the quality of relatively great expansibility. Another natural law is that the force required to move a body depends upon its size and weight. So it follows that with only a certain amount of available force a large body cannot be moved as rapidly as a small one. The force of 200 pounds of steam in a lo omotive boiler might be sufficient to haul a train of six cars at a speed of thirty miles per hour, but if more cars be added it will result in a slower speed. The same principle applies to a watch as to a railway train. Therefore if the balance wheel becomes larger as it grows warmer, and the force 170 Parts Compose a 16 Size Watch Movement. (A Little More than 1/2 Actual Size) which turns the wheel is not changed, the speed of movement must be reduced One other natural law which affects the running of watches is this: Variations in temperature affect the elasticity of metals. Now the balance spring of a watch is made from steel, and is carefully tempered in order to obtain its highest elasticity. Increase in temperature therefore introduces three elements of disturbance, all of which act in the same direction of reducing the speed. First, it enlarges the balance wheel; second, it increases the length of the spring; third, it reduces the elasticity of the spring. To overcome these three disturbing factors a very ingenious form of balance has been devised.