The body department occupies the greatest amount of space, requiring, with the upholstering department, most of the three upper floors. In addition to this work the construction of tops, curtains and radiators is carried on, and a large space is used for the storage of equipment and parts, such as lamps, horns, tires, etc. A part of the second floor is devoted to the storage and the shipping of parts to branches and agents. Having seen the body placed upon the chassis, the visitor passes along toward the north. In succession are the chutes on which the crates of fenders are sent down from the fourth floor of the main factory building to the shipping platform. Here is also a chain elevator, which raises the wheels out of the freight cars to a runaway on which they travel by gravity to the third floor of the main factory. With this device it is possible for three or four men to unload about 6,000 wheels each day.

Mechanical Starter   End of Final Assembly

Mechanical Starter - End of Final Assembly.

One passes the loading docks, where crews of six to eight men each, working as a unit, remove the bodies and wheels from the chassis, and load them into freight cars. So proficient are these loaders that a freight car is loaded in twenty minutes. Approximately 150 loaded freight cars are sent out every day. Besides these factory shipments there are more than 300 loaded freight cars in transit each day from branch factories.

The bodies are shipped separate from the chassis, being stood on end in one-half of the car and protected from dust by coverings.

The chassis are put in the other end of the car, the first one being carried in, minus the wheels, and placed in a diagonal position. Brackets of cast iron, for holding the axle to the floor, are made in the foundry. The front axle rests on the floor, and the rear axle rests against the opposite wall near the top of the car. A block, with a hole which just fits the axle, holds it against the wall.

The next chassis is brought in and placed with its front axle opposite the first one.

The Body Chute, where Bodies are Placed on Each Chassis

The Body Chute, where Bodies are Placed on Each Chassis.

In this way the chassis alternate until the car is full. The space in the center of the car contains the fenders, and other removable parts of the equipment.

Just beyond the loading docks is the foundry.

The foundry is one of the most interesting divisions of the entire plant, and ranks, perhaps, as one of the most unique in the country, as far as practice and equipment are concerned. As a general rule, foundry practice has not shown the changes in an increase of production that machine departments have, but in this foundry, due to standardization of parts and specialization on the one car, it has been possible to devise and install the unique equipment now used, which brings this department down to the plane of expense and up in the labor-saving efficiency prevailing throughout the entire plant.

Craneway, Showing Loading Platforms

Craneway, Showing Loading Platforms .

This department works twenty-four hours a day, in three shifts of eight hours each; iron is being melted and poured continuously during the day and first night shifts. An average of over 400 tons of iron is poured daily, and 426 tons of gray iron have been poured in a single day. This tonnage is especially interesting, as it is produced on a floor space of only 36,324 square feet.

All this iron is poured on overhead power-driven mold carriers, which travel about twelve feet per minute. These mold carriers have suspended from them pendulumlike arms, on the lower end of which is a shelf. The molders who make the molds for the castings are stationed alongside of these conveyors; the molding sand with which they fill the flasks is stored overhead in a hopper, the gate of which discharges directly onto the molding machine. There are two molders for each part, one making the "drag," or lower part of the mold, the other making the "cope," or the upper half.

When these two halves of the mold are finished they are put together; or "closed" on the shelf of the conveyor, which carries the finished mold to the man who pours the molten metal. The molten metal is brought to this man's station by means of large ladles, suspended on a trolley on an I-beam track, running from the cupola through the entire length of the foundry. This does away with the necessity of carrying the ladle of iron a long distance, thus saving much time and lessening the liability to accidents. While the mold is being poured it is in constant motion, and continues so from the pouring station to the end of the conveyor, where the casting is shaken out of the sand. The casting is thrown to one side to cool, the flasks are hung upon hooks on the arm of the conveyor, to be returned to the molder, and the sand drops through a grating in the floor onto a belt conveyor; on this conveyor it is dropped on an elevator, raised overhead and "cut," or mixed with new sand, and passed on to another conveyor, which deposits it in the hoppers above referred to, ready for the molder's use. In all this journey the sand is never shoveled.

Continuous Core Oven

Continuous Core-Oven.

Quenching Steel Forgings in Heat Treatment Operation

Quenching Steel Forgings in Heat-Treatment Operation.

In casting cylinders, on account of their size and the care needed in setting the cores, a different style conveyor is used. The molder, instead of putting the mold on a pendulum conveyor, places it upon a track, where it is moved by means of a chain. During this travel the various cores are set, and the molds closed, moving to the point where the men with large ladles pour the mold. From this point it is transferred to another track. As it travels down this track, the casting is given an opportunity to "set," or cool. At the end of this line it is shaken out over a grating, and the sand handled in the same manner as on the smaller conveyors.