The turbine just described can hardly be termed an efficient one, as the vanes, owing to their simple formation, are not shaped to give good results. We therefore offer to our readers a design for a small turbine of a superior character. This turbine is shown in elevation and section in Fig. 70. The casing is, as in the preceding instance, made up of flat brass plates and a ring of tubing, and the bearings, BG1, BG2, of brass tube. But the wheel is built up of a disc 3 inches in diameter, round the circumference of which are 32 equally-spaced buckets, blades, or vanes, projecting 5/8 inch beyond the edge of the disc. The wheel as a whole is mounted on a spindle 3-1/8 inches long, to which it is secured by three nuts, N1 N2 N3. One end of the spindle is fined down to take a small pinion, P1, meshing with a large pinion, P2, the latter running in bearings, BG3, in the wheel-case and cover. The drive of the turbine is transmitted either direct from the axle of P2 or from a pulley mounted on it.

Construction

The Wheel

If you do not possess a lathe, the preparation of the spindle and mounting the wheel disc on it should be entrusted to a mechanic. Its diameter at the bearings should be 5/32 inch or thereabouts. (Get the tubing for the bearings and for the spindle turned to fit.) The larger portion is about twice as thick as the smaller, to allow room for the screw threads. The right-hand end is turned down quite small for the pinion, which should be of driving fit.

The Blades

Mark out a piece of sheet iron as shown in Fig. 71 to form 32 rectangles, 1 by l/2 inch. The metal is divided along the lines aaaa, bbbb, and ab, ab, ab, ab, etc. The piece for each blade then has a central slot 5/16 inch long and as wide as the wheel disc cut very carefully in it.

Bending The Blades

In the edge of a piece of hard wood 1 inch thick file a notch 3/8 inch wide and 1/8 inch deep with a 1/2-inch circular file, and procure a metal bar which fits the groove loosely. Each blade is laid in turn over the groove, and the bar is applied lengthwise on it and driven down with a mallet, to give the blade the curvature of the groove. When all the blades have been made and shaped, draw 16 diameters through the centre of the wheel disc, and at the 32 ends make nicks 1/16 inch deep in the circumference.

True up the long edges of the blades with a file, and bring them off to a sharp edge, removing the metal from the convex side.

Fixing The Blades

Select a piece of wood as thick as half the width of a finished blade, less half the thickness of the wheel disc. Cut out a circle of this wood 2 inches in diameter, and bore a hole at the centre. The wheel disc is then screwed to a perfectly flat board or plate, the wooden disc being used as a spacer between them.

Slip a blade into place on the disc, easing the central slit, if necessary, to allow the near edge to lie in contact with the board -- that is parallel to the disc. Solder on the blade, using the minimum of solder needed to make a good joint. When all the blades are fixed, you will have a wheel with the blades quite true on one side. It is, therefore, important to consider, before commencing work, in which direction the concave side of the blades should be, so that when the wheel is mounted it shall face the nozzle.

To make this point clear: the direction of the nozzle having been decided, the buckets on the trued side must in turn present their concave sides to the nozzle. In Fig. 70 the nozzle points downwards, and the left side of the wheel has to be trued. Therefore B1 has its convex, B2 its concave, side facing the reader, as it were.

Vertical section of steam turbine with formed blades (left); outside view of turbine, gear side (right)

Fig. 70. Vertical section of steam turbine with formed blades (left); outside view of turbine, gear side (right).

The Nozzle is a 1-1/2 inch piece of brass bar. Drill a 1/20-inch hole through the centre. On the outside end, enlarge this hole to 1/8 inch to a depth of 1/8 inch. The nozzle end is bevelled off to an angle of 20 degrees, and a broach is inserted to give the steam port a conical section, as shown in Fig. 72, so that the steam may expand and gain velocity as it approaches the blades. Care must be taken not to allow the broach to enter far enough to enlarge the throat of the nozzle to more than 1/20 inch.

Fixing The Nozzle

The centre of the nozzle discharge opening is 1-13/16-inches from the centre of the wheel. The nozzle must make an angle of 20 degrees with the side of the casing, through which it projects far enough to all but touch the nearer edges of the vanes. (Fig. 72.) The wheel can then be adjusted, by means of the spindle nuts, to the nozzle more conveniently than the nozzle to the wheel. To get the hole in the casing correctly situated and sloped, begin by boring a hole straight through, 1/4 inch away laterally from where the steam discharge hole will be, centre to centre, and then work the walls of the hole to the proper angle with a circular file of the same diameter as the nozzle piece, which is then sweated in with solder. It is, of course, an easy matter to fix the nozzle at the proper angle to a thin plate, which can be screwed on to the outside of the casing, and this method has the advantage of giving easy detachment for alteration or replacement.

Balancing The Wheel

As the wheel will revolve at very high speed, it should be balanced as accurately as possible. A simple method of testing is to rest the ends of the spindle on two carefully levelled straight edges. If the wheel persists in rolling till it takes up a certain position, lighten the lower part of the wheel by scraping off solder, or by cutting away bits of the vanes below the circumference of the disc, or by drilling holes in the disc itself.

Plate marked out for turbine wheel blades. B is blade as it appears before being curved

Fig. 71. Plate marked out for turbine wheel blades. B is blade as it appears before being curved.

Securing The Wheel

When the wheel has been finally adjusted relatively to the nozzle, tighten up all the spindle nuts hard, and drill a hole for a pin through them and the disc parallel to the spindle, and another through N3 and the spindle. (Fig. 70.)

Gearing

The gear wheels should be of good width, not less than 3/16 inch, and the smaller of steel, to withstand prolonged wear. Constant lubrication is needed, and to this end the cover should make an oil-tight fit with the casing, so that the bottom of the big pinion may run in oil. To prevent overfilling, make a plug-hole at the limit level, and fit a draw-off cock in the bottom of the cover. If oil ducts are bored in the bearing inside the cover, the splashed oil will lubricate the big pinion spindle automatically.

General -- The sides of the casing are held against

Testing

If your boiler will make steam above its working pressure faster than the turbine can use it, the nozzle may be enlarged with a broach until it passes all the steam that can be raised; or a second nozzle may be fitted on the other end of the diameter on which the first lies. This second nozzle should have a separate valve, so that it can be shut off.

Nozzle of turbine, showing its position relatively to buckets.  the drum by six screw bolts on the outside of the drum. The bottom of the sides is flattened as shown (Fig. 70), and the supports, S1 S2, made of such a  length that when they are screwed down the flattened part is pressed hard against the bed. The oil box on top of the casing has a pad of cotton wool at the bottom to regulate the flow of oil to the bearings. Fit a drain pipe to the bottom of the wheel case

Fig. 72. Nozzle of turbine, showing its position relatively to buckets. the drum by six screw bolts on the outside of the drum. The bottom of the sides is flattened as shown (Fig. 70), and the supports, S1 S2, made of such a length that when they are screwed down the flattened part is pressed hard against the bed. The oil box on top of the casing has a pad of cotton wool at the bottom to regulate the flow of oil to the bearings. Fit a drain pipe to the bottom of the wheel-case.

Perspective view of completed turbine

Fig. 73. Perspective view of completed turbine.