The Eccentric

This can be formed by soldering two thin brass discs 1-15/16- inch diameter concentrically to the sides of a disc of 1-15/16-inch diameter and 5/16 inch thick. The centre of the shaft hole must be exactly 9/32 inch from the centre of the eccentric to give the proper valve-travel. Drill and tap the eccentric edgeways for a lock screw.

A piece to which the eccentric strap, eccentric rod, and pump rod are attached is cut out of 5/16-inch brass. Its shape is indicated in Fig. 53. The side next the eccentric must be shaped as accurately as possible to the radius of the eccentric. The strap, of strip brass, is fastened to the piece by four screws, the eccentric rod by two screws.

Crosshead And Guides

The crosshead (Figs. 53 and 54) is built up by soldering together a flat foot of steel, a brass upright, and a tubular top fitting the piston rod. The guides, which consist of a bed, covers, and distance-pieces united by screws (Fig. 64), have to withstand a lot of wear, and should preferably be of steel. The importance of having them quite flat and straight is, of course, obvious.

The last 1-3/8 inches of the piston rod has a screw thread cut on it to engage with a threaded hole in the fork (cut out of thick brass plate), to which the rear end of the connecting rod is pinned, and to take the lock nut which presses the crosshead against this fork.

Assuming that all the parts mentioned have been prepared, the cylinder should be arranged in its proper place on the bed, the piston rod centrally over its centre line. Mark and drill the screw holes in the bed.

The Valve Gear

We may now attend to the valve gear. A fork must be made for the end of the valve rod, and soldered to it with its slot at right angles to the slots which engage with the valve lugs. Slip the rod into the steam chest, put the valve on the rod, and attach the chest (without the cover) to the valve plate by a bolt at each corner. Pull the valve forward till the rear port is just uncovered, and turn the eccentric full forward. You will now be able to measure off exactly the distance between the centres of the valve-rod fork pin and the rear screw of the eccentric. The valve connecting rod (Fig. 53, VCR) should now be made and placed in position. If the two forward holes are filed somewhat slot-shaped, any necessary adjustment of the valve is made easier. If the adjustment of VCR and the throw of the eccentric are correct, the valve will just expose both end ports alternately when the crank is revolved. If one port is more exposed than the other, adjust by means of the eccentric screws till a balance is obtained. Should the ports still not be fully uncovered, the throw of the eccentric is too small, and you must either make a new eccentric or reduce the width of the valve. (The second course has the disadvantage of reducing the expansive working of the steam.) Excess movement, on the other hand, implies too great an eccentric throw.

Setting The Eccentric

Turn the crank full forward, so that a line through the crank pin and shaft centres is parallel to the bed. Holding it in this position, revolve the eccentric (the screw of which should be slackened off sufficiently to allow the eccentric to move stiffly) round the shaft in a clockwise direction, until it is in that position below the shaft at which the front steam port just begins to show. Then tighten up the eccentric lock screw.[1]

The Connecting Rod

The length of this from centre to centre of the pins on which it works should be established as follows:--Slip over the piston rod a disc of card 1/32 inch thick. Then pass the rod through the gland and assemble the crosshead and fork on its end, and assemble the guides round the crosshead foot. Turn the crank pin full forward, pull the piston rod out as far as it will come, measure the distance between pin centres very carefully, and transfer it to a piece of paper.

The rod consists of a straight central bar and two rectangular halved ends. The ends should be cut out of brass and carefully squared. Through their exact centres drill 1/8-inch holes, and cut the pieces squarely in two across these holes. The sawed faces should be filed down to a good fit and soldered together. Now

Cross section of crosshead and guide

Fig. 64. Cross section of crosshead and guide.

[1: The reader is referred to an excellent little treatise, entitled "The Slide Valve" (Messrs. Percival Marshall and Co., 26 Poppin's Court, Fleet Street, E.C. Price 6d.), for a full explanation of the scientific principles of the slide valve.] drill holes of the size of the pins, using what remains of the holes first made to guide the drill. The bolt holes are drilled next, and finally the holes for lubrication and those to take the rods. Then lay the two ends down on the piece of paper, so that their pinholes are centred on the centre marks, and the holes for the rod are turned towards one another. Cut off a piece of steel rod of the proper length and unsolder the ends. The rod pieces must then be assembled on the rod, and with it be centred on the paper and held in position while the parts are soldered together.

Other Details

Adjusting The Guides

Put the connecting rod in place on its pins, and revolve the crank until the guides have taken up that position which allows the crosshead to move freely. Then mark off the holes for the guide holding-down screws, and drill and tap them.

Packings

The glands and piston should be packed with asbestos string. Don't be afraid of packing too tightly, as the tendency is for packing to get slacker in use. The rear end of the cylinder should be bevelled off slightly inside, to allow the packed piston to enter easily.

Joints

The cylinder head and valve chest joints should be made with stout brown paper soaked in oil or smeared with red lead. All screw holes should be cut cleanly through the paper, and give plenty of room for the screws.

When making a joint, tighten up the screws in rotation, a little at a time so as not to put undue strain on any screw. Wait an hour or two, and go round with the screw-driver again.

Lubrication

When the engine is first put under steam, lubrication should be very liberal, to assure the parts "settling down" without undue wear.