This section is from the book "Things To Make", by Archibald Williams. Also available from Amazon: Things to Make.
The capacity of the lungs, and their powers of inspiration and expiration, can be tested by means of easily constructed apparatus which will interest most people who are introduced to it. The reduction of the capabilities of the lungs to figures affords a not unprofitable form of entertainment, as even among adults these figures will be found to vary widely.
The air which the lungs deal with is scientifically classified under four heads:1. Tidal air, which passes into and out of the lungs in natural breathing. About 30 cubic inches in an adult (average).
2. Reserve air, which can be expelled after a normal expiration. About 100 cubic inches.
3. Complemental air, which can be drawn in after a normal inspiration. About 100 cubic inches.
4. Residual air, which cannot be removed from the lungs under any conditions by voluntary effort. About 120 cubic inches.
The first three added together give the vital capacity. This, as an addition sum will show, is very much greater than the volume of air taken in during a normal inspiration.
The simplest method of testing the capacity of an individual pair of lungs is embodied in the apparatus shown in Figs. 165 and 166. A metal box is submerged, bottom upwards, in a tank of somewhat larger dimensions, until the water is level with the bottom inside and out. A counterweight is attached to the smaller box to place it almost in equilibrium, so that if air is blown into the box it will at once begin to rise.
If we make the container 7-1/16 inches square inside, in plan, every inch it rises will represent approximately 50 cubic inches of air blown in; and a height of 7 inches, by allowing for 325 cubic inches, with a minimum immersion of half an inch, should suffice even for unusually capacious lungs. The outside box need not be more than 8 inches all ways.
Unless you are an expert with the soldering iron, the making of the boxes should be deputed to a professional tinman, who would turn out the pair for quite a small charge. Specify very thin zinc for the air vessel, and have the top edges stiffened so that they may remain straight.
On receiving the boxes, cut a hole 3/4-inch diameter in the centre of the bottom of the air vessel, and solder round it a piece of tubing, A, 1 inch long, on the outside of the box. In the centre of the larger box make a hole large enough to take a tube, E, with an internal diameter of 1/8 inch. This tube is 8 inches long and must be quite straight. Next procure a straight wire, C, that fits the inside of the small tube easily; make an eye at the end, and cut off about 9 inches. Bore a hole for the wire in a metal disc 1 inch across.
The air container is then placed in the water box and centred by means of wooden wedges driven in lightly at the corners. Push the small tube through its hole in the water box, and thrust the wire--after passing it through the disc and the projection on the air container--into the tube. The tube should reach nearly to the top of the air container, and the wire to the bottom of the water box. Solder the tube to the box, the wire to the disc, and the disc to the container. A little stay, S, will render the tube less liable to bend the bottom of the box. Plug the tube at the bottom.
The wire sliding in the tube will counteract any tendency of the container to tilt over as it rises.
A nozzle, D, for the air tube is soldered into the side of A, as shown.
The counterweight is attached to the container by a piece of fine strong twine which passes over two pulleys, mounted on a crossbar of a frame screwed to the sides of the water box, or to an independent base. The bottom of the central pulley should be eight inches above the top of the container, when that is in its lowest position.
For recording purposes, make a scale of inches and tenths, and the corresponding volumes of air, on the side of the upright next the counterweight. The wire, W, is arranged between counterweight and upright so that an easily sliding plate, P, may be pushed down it by the weight, to act as index.
The pulleys must work easily, to reduce friction, which renders the readings inaccurate.
Absolute accuracy is not obtainable by this apparatus, as the rising of the container lowers the water level slightly, and the air has to support part of the weight of the container which was previously borne by the water. But the inaccuracy is so small as to be practically negligible.

Fig. 166. Section of lung-capacity tester.

Fig. 166. Perspective view of lung-capacity tester.

Fig. 167. Apparatus for showing lung power.
 
Continue to: