Above the boiler rises a rectifying column composed of superposed plates inclined one over the other, and surmounted by a tubular condenser, which serves to effect the retrogression of the first condensation by means of a current of water supplied by the reservoir placed above.

On leaving this condenser, the vapors which have escaped condensation pass into the refrigerator, C, where they are totally condensed by a current of water which goes to the reservoir above.

The first products obtained contain ethers and impure alcohols, which are collected in the reservoir, E.

When the first products have been thus introduced into the reservoir, and it is ascertained by tasting that good alcohol is passing over, the liquid produced is directed into the second boiler, F. The sliding valve, operated by a screw having a very fine pitch, establishes a communication between the refrigerator, C, and the second boiler, F. The office of this valve we shall learn further on. This first rectification is performed in a vacuum, for a system of metallic pipes connects the entire apparatus with an air-pump, O. The temperature at which the liquids shall enter into ebullition in the boilers, A A, may, then, be regulated in advance.

The operations will be carried on with a more or less complete vacuum, according to the nature of the products to be rectified. The distiller will have to be guided in this by practice alone.

The good tasted products are received in boiler No. 2, F, and there the liquids are submitted to the action of an almost absolute vacuum. As we have before said, their temperature falls immediately and spontaneously. The vapors which issue from this liquid contain almost solely pure alcohol. The other substances, which passed over in the first distillation, no longer emit vapors at temperatures ranging between -10° and +5°. Their temperature is shown by a thermometer running into the boiler, F.

These vapors, purified by ebullition at a low temperature, rise into a second rectifying column, G, which terminates in the refrigerator, H, filled with liquid sulphurous anhydride. This refrigerator is like those which we employ in our sulphurous anhydride frigorific apparatus. Under the action of a special pump, M, this liquid produces and maintains a constant temperature of -25° to -30° in the refrigerator. The vapors of alcohol condense therein at this low temperature, and the cold liquid alcohol flows into the lower part of the refrigerator.

By the action of a return cock, a portion of this liquid falls upon the plates of the column, G, and descends, while the vapors are rising therein. The other portion of the liquid obtained flows into the reservoir, K, at the beginning of the operation, and into the reservoir, L, during all the remainder of the rectification. The ice-making machine keeps up of itself alone the two operations.

In fact, the exhaust of the steam engine which actuates the sulphurous anhydride pump is directed into a worm which circulates through the first boiler, A, and the refrigerator, H, of the frigorific machine keeps up the second rectification, which was brought about below the surrounding temperature, and which for this reason takes place without necessitating any combustion of coal. It suffices to cause the current of water which issues from the condenser of the frigorific machine to pass into the worm of the boiler.

We have, then, two results, two like operations, both produced by the working of a single machine. Moreover, these two operations are performed in vacuo, and we know that under these conditions they are effected at lower temperatures. Owing to this fact, likewise, the weight of the water that must be evaporated diminishes just so much. Now, one kilogramme of water requires 636 heat units to cause it to pass from the liquid to the gaseous state, while one kilogramme of alcohol requires only 230 heat units to vaporize it. Thus every decrease of temperature in rectification has for an immediate corollary an important economy of fuel, which is proved by the diminution of radiation, and by the less quantity of water to be distilled.

Between the boilers, A, in which is maintained a temperature bordering on +50° to +60°, and the refrigerator, H, in which is easily obtained a temperature of -30° to -40°, there is at our disposal a range of temperature of nearly 100°, an immense difference compared with that which can be made use of in ordinary apparatus. Thanks to this powerful factor, which is manageable at will, we can take directly from the apparatus alcohols marking 98 and 99 degrees by the centigrade alcoholmeter. Such results are unobtainable by the usual methods.

We have likewise ascertained that at low temperatures the ebullition of alcohol is as active as at near 100°.

For a same range of temperature between the boiler and the refrigerator, the weight of alcohol which distills in an hour is constant. By the operation of the valve, D, it becomes easy to allow all the liquid condensed in the first refrigerator to pass into the second boiler; and thus the second rectification, which is effected in a more perfect vacuum, is supplied with exactness. The object of this valve, then, is to allow the liquid to pass, and yet to cut off the pressure in such a way as to have a double fall of temperature throughout the whole apparatus; from 60° to 20° in the first operation, and from 0° to -40° in the second. We may add that the regulation of the valve is extremely easy, because of the screw which actuates it.

To sum up the commercial advantages that our process procures, we may say that it realizes the following desiderata: 1. With the cost of a single distillation we have, at once, distillation and rectification, or a single expense for two results. 2. With one operation at a low temperature we obtain products which are almost impossible to get even by an indefinite number of rectifications at a high temperature, the temperature having an intrinsic value in the operation. 3. The alcohols obtained are wholesome, and can be put on the market without danger. 4. Their superior quality gives these alcohols an extra value difficult to calculate, but which is very notable. 5. The whole operation being performed in closed vessels, there is absolutely no waste. 6. For the same reason there is scarcely any danger of fire. 7. The management of the works and the service are performed by the pressure of the gases entirely; there are only a few cocks to be turned to perform all the interior maneuvers, empty and fill the vessels, etc. Hence economy in personnel.