[Footnote: A paper read Feb. 8, 1882, before the Society of Arts, London.]


A great change has lately been taking place throughout Europe in the matter of armaments. Artillery knowledge has been advancing "by leaps and bounds;" and all the chief nations are vying with each other in the perfection of their matériel of war. As a readiness to fight is the best insurance for peace, it behooves us to see from time to time how we stand, and the present moment is a peculiarly suitable one for taking stock of our powers and capabilities. I propose, therefore, to give you, this evening, a brief sketch of the principles of manufacture of modern guns, at home and abroad, concluding with a few words on their employment and power.

The introduction of rifled cannon into practical use, about twenty years ago, caused a complete revolution in the art of gun-making. Cast iron and bronze were found no longer suitable for the purpose. Cast iron was too brittle to sustain the pressure of the powder gas, when its duration was increased by the use of elongated projectiles; while the softness of bronze was ill adapted to retain the nicety of form required by accurate rifling.

From among a cloud of proposals, experiments, and inventions, two great systems at length disentangled themselves. They were the English construction of built-up wrought iron coils, and the Prussian construction of solid steel castings.

Wrought-iron, as you are all aware, is nearly pure iron, containing but a trace of carbon. Steel, as used for guns, contains from 0.3 to 0.5 per cent of carbon; the larger the quantity of carbon, the harder the steel. Since the early days of which I am now speaking, great improvement has taken place in the qualities of both materials, but more especially in that of steel. Still the same general characteristics were to be noted, and it may be broadly stated, that England chose confessedly the weaker material, as being more under control, cheaper, and safer to intrust with the lives of men; while Prussia selected the stronger but less manageable substance, in the hope of improving its uniformity, and rendering it thoroughly trustworthy. The difference in strength, when both are sound, is great. Roughly, gun steel is about twice as strong as wrought iron.

I must now say a few words on the nature of the strains to which a piece of ordnance is subjected when fired. Gunpowder is commonly termed an explosive, but this hardly represents its qualities accurately. With a true explosive, such as gun-cotton, nitro glycerine and its compounds, detonation and conversion of the whole into gas are practically instantaneous, whatever the size of the mass; while, with gunpowder, only the exterior of the grain or lump burns and gives off gas, so that the larger the grain the slower the combustion. The products consist of liquids and gases. The gas, when cooled down to ordinary temperature, occupies about 280 times the volume of the powder. At the moment of combustion, it is enormously expanded by heat, and its volume is probably somewhat about 6,000 times that of the powder. I have here a few specimens of the powders used for different sizes of guns, rising from the fine grain of the mountain gun to the large prisms and cylinders fired in our heavy ordnance. You will readily perceive that, with the fine-grained powders, the rapid combustion turned the whole charge into gas before the projectile could move far away from its seat, setting up a high pressure which acted violently on both gun and shot, so that a short, sharp strain, approximating to a blow, had to be guarded against.

With the large slow-bursting powders now used, long heavy shells move quietly off under the impulse of a gradual evolution of gas, the presence of which continues to increase till the projectile has moved a foot or more; then ensues a contest between the increasing volume of the gas, tending to raise the pressure, and the growing space behind the advancing shot, tending to relieve it. As artillery science progresses, so does the duration of this contest extend further along the bore of the gun toward the great desideratum, a low maximum pressure long sustained.

When quick burning powder was used for ordnance, the pressures were short and sharp; the metal in immediate proximity to the charge was called upon to undergo severe strains, which had scarcely time to reach the more distant portions of the gun at all; the exterior was not nearly so much strained as the interior. In order to obviate this defect, and to bring the exterior of the gun into play, the system of building up guns of successive tubes was introduced. These tubes were put one over the other in a state of tension produced by "shrinkage." This term is applied to the process of expanding a tube by the application of heat, and in that condition fitting it over a tube larger than the inner diameter of the outer tube when cold. When the outer tube cools it contracts on the inner tube and clutches it fast. The wrought-iron guns of England have all been put together in this manner.

Prussia at first relied on the superior strength of solid castings of steel to withstand the explosive strain, but at length found the necessity for re-enforcing them with hoops of the same material, shrunk on the body of the piece.

The grand principle of shrinkage enables the gunmaker to bring into play the strength of the exterior of the gun, even with quick powders, and to a still greater extent as the duration of the strain increases with the progress of powder manufacture. Thus, taking our largest muzzle-loaders designed a few years ago, the thin steel lining tube, which forms an excellent surface, is compressed considerably by the wrought-iron breech coil holding it, which, in its turn, is compressed by the massive exterior coil. When the gun is fired, the strain is transmitted at once, or nearly at once, to the breech coil, and thence more slowly to the outer one. Now, as the duration of the pressure increases, owing to the use of larger charges of slower burning powder, it is evident that the more complete and effective will be the transmission of the strain to the exterior, and, consequently, the further into the body of the gun, starting from the bore, and traveling outward, does it become advantageous to employ the stronger material. Hence, in England, we had reason to congratulate ourselves on the certainty and cheapness of manufacture of wrought iron coils, as long as moderate charges of comparatively quick burning powder were employed, and as long as adherence to a muzzle-loading system permitted the projectiles to move away at an early period of the combustion of the charge. Then the pressures, though sharp, were of short duration, and were not thoroughly transmitted through the body of the gun, so that the solidity, mass, and compression of the surrounding coils proved usually sufficient to support the interior lining. Now that breech-loading and slow powders have been introduced, these conditions have been changed. The strains, though less severe, and less tending to explosive rupture, last longer, and are more fully transmitted through the body of the gun. Sheer strength of material now tells more, and signs have not been wanting that coils of wrought iron afford insufficient support to the lining. It becomes, therefore, advantageous to thicken the inner tube, and to support it with a steel breech piece. Carrying this principle further, we shall be led to substitute the stronger for the weaker metal throughout the piece. This has been done by the Germans in the first instance, and recently by the French also. It is probable that we shall follow the same course. When I say "probable," I intentionally guard myself against uttering a prediction. It is never safe to prophesy, unless you know, as the American humorist puts it. And in this case we do not know, for a very dangerous rival, once defeated, but now full of renewed vigor, has entered the lists against forged steel as a material for ordnance. This rival's name is wire. Tempered steel wires can be made of extraordinary strength. A piece of round section, only one thirty-fifth of an inch in diameter, will just sustain a heavy man.