Steel Boilers

The writer stated that his experience in the manufacture and working of steel boilers was satisfactory. Many steel boilers of sizes varying from six feet diameter to fourteen feet six inches diameter have left the works at St. Peter's since 1877, when the first was made; and in no case has there been a failure of a plate after being put into a boiler, either in the process of manufacture or in working at sea. The mode of working is as follows: For shell plates, from five-eighths inch to seven-eighths inch thick, to warm each to a dark red heat before rolling, having previously drilled a few holes to template for bolting the strakes together; the longitudinal seams are usually lap joints treble riveted, requiring the corners to be thinned, which is done after rolling. The furnace plates are generally welded two plates in length, and flanged to form Adamson rings, and at the back end to meet the tube plate; the back flame-box plates are flanged, also the tube plates and front and back plates; and wherever work is put on to the plate it is annealed before going into the place. The rivet holes are drilled throughout. In the putting together the longitudinal seams of the thicker plates of the shells, great care is always taken to set the upper and under plates for the lap to their proper angle before they are bolted together, a point generally overlooked by the practical boilersmith.

Corrosion Of Boilers

The question of corrosion is one which is gradually being answered as time goes on; and so far very satisfactorily for steel. Some steel boilers were examined a few weeks ago which were among the first made; and the superintending engineer reports: "There is no sign of pitting or corrosion in any part of the boiler; the boilers are washed out very carefully every voyage, and very carefully examined, and I cannot trace anything either leaking or eating away. No zinc is used, only care in washing out, drying out, and managing the water." This is the evidence of an engineer with a large number of vessels in his charge. On the other hand, some of the most prominent Liverpool engineers always use zinc, and take care to apply it most strictly. The evidence of one of them is as follows: "We always fix slabs of zinc to most boilers, exposing not less than a surface of one square foot for every twenty indicated horse-power, and distributed throughout the boiler. This zinc we find to be in a state of oxide and crumbling away in about three months. We then renew the whole, and find this will last twelve months or more, when it is renewed again. Meanwhile we have no pitting and no corrosion; but on the contrary, the interior surfaces appear to have taken a coating of oxide of zinc all over, and we have no trouble with them."

How The Marine Engine May Be Improved

Then the writer considered our present marine engine as to its efficiency and capability of further improvement. The weight of machinery, water, and fuel carried for propelling ships has not had due attention in the general practice of engineers. By the best shipping authorities the writer is assured that every ton of dead weight capacity is worth on an average £10 per annum as earning freight. Assuming, therefore, the weight of the machinery and water of any ordinary vessel to be 300 tons, and that, by careful design and judicious use of materials, the engineer can reduce it by 100 tons, without increasing the cost of working, he makes the vessel worth £1,000 per annum more to her owners. That there is much room for improvement in this direction is shown by the following statement, giving, for various classes of ships, the average weight of machinery, including engines, boilers, water, and all fittings ready for sea, in pounds, per indicated horse power:

 Lb. per I. H. P. 
Merchant steamers.......................... 480 Royal Navy................................. 300 Engines specially designed for light draught vessels...................................280 Royal Navy, Polyphemus class (given by Mr. Wright).................................. 180 Modern locomotive.......................... 140 Torpedo vessels............................. 60
Ordinary marine boilers, including water... 196 Locomotive boilers, including water......... 60

The ordinary marine boiler, encumbered as it is by the regulations of the Board of Trade and of Lloyds' Committee, does not admit of much reduction in the weight of material or of water carried when working. The introduction of steel has reduced the weight by about one-tenth; but it will be the alteration of form to the locomotive, tubulous, or some other type, combined with some method of forced draught, to which we must look for such reductions in weight of material and water as will be of any great commercial value. The engine may be reduced in weight by reducing its size, and this can only be done by increasing the number of revolutions per minute.

It has hitherto been the practice to treat the propeller as dependent upon the size of engines, draught of water, and speed required. This process should be reversed. The propeller's diameter depends on the column of water behind necessary to overcome the resistance in front of it due to the properties of the vessel. This fixed, the speed will then fix the number of revolutions, which will be found much greater than is usual in practice, and from this the size of the engines and boilers will be determined. Great saving in weight can be effected by careful design and judicious selection and adaptation of materials, also by the substitution of trussed framing and a proper mode of securing the engine to the structure of the vessel, as worked out in H.M.S. Nelson, by Mr. A. C. Kirk, of Glasgow, and in the beautifully designed engines by Mr. Thornycroft, in place of the massive cast-iron bedplates and columns of the ordinary engines of commerce. The same may be said of the moving parts. In fine, the hull and engines should be as much as possible one structure; rigidity in one place and elasticity in others are the cause of most of the accidents so costly to the ship-owner; under such conditions mass and solidity cease to be virtues, and the sooner their place is taken by careful design, and the use of the smallest weight of material--of the very best kind for the purpose--consistent with thorough efficiency, the better for all concerned.